nature.com

Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion - Nature Genetics

  • ️MacDonald, Marcy E.
  • ️Mon Dec 01 1997
  • Martin, J.B. & Gusella, J.F. Huntington's disease: pathogenesis and management. N. Engl. J. Med. 315, 1267–1276 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Vonsattel, J.P. et al. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neuml. 44, 559–577 (1985).

    Article  CAS  Google Scholar 

  • A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 72, 971–983 (1993).

    Article  Google Scholar 

  • McNeil, S.M. et al. Reduced penetrance of the Huntington's disease mutation. Hum. Mol. Genet. 6, 775–779 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein, D.C. et al. Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36–39 repeats. Am. J. Hum. Genet. 59, 16–22 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gusella, J.F., Persichetti, F. & MacDonald, M.E. The genetic defect causing Huntington's disease: repeated in other contexts. Mol. Med. 3, 238–246 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ide, K. et al. Abnormal gene product identified in Huntington's disease lymphocytes and brain. Biochem. Biophys. Res. Commun. 209, 1119–1125 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Trottier, Y. et al. Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nature Genet. 10, 104–110 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Jou, Y.S. & Myers, R.M. Evidence from antibody studies that the CAG repeat in the Huntington disease gene is expressed in the protein. Hum. Mol. Genet. 4, 465–469 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Sharp, A.H. et al. Widespread expression of Huntington's disease gene (IT15) protein product. Neuron. 14, 1065–1074 (1995).

    Article  CAS  PubMed  Google Scholar 

  • DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron. 14, 1075–1081 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Gutekunst, C.-A. et al. Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc. Natl. Acad. Sci. USA. 92, 8710–8714 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persichetti, F. et al. Normal and expanded Huntington's disease alleles produce distinguishable proteins due to translation across the CAG repeat. Mol. Med. 1, 374–383 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trottier, Y. et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature. 378, 403–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Persichetti, F. et al. Huntington's disease CAG trinucleotide repeats in neuropathologically confirmed post-mortem brains. Neurobiol. Dis. 1, 159–166 (1995).

    Article  Google Scholar 

  • Li, X.J. et al. A huntingtin-associated protein enriched in brain with implications for pathology. Nature. 378, 398–402 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Bao, J. et al. Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc. Natl. Acad. Sci. USA. 93, 5037–5042 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke, J.R. et al. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nature Med. 2, 347–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Kalchman, M.A. et al. HIP1, a human homologue of S cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nature Genet. 16, 44–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Wanker, E.E. et al. HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum. Mol. Genet. 6, 487–495 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Ambrose, C.M. et al. Structure and expression of the Huntington's disease gene: evidence against simple inactivation due to an expanded CAG repeat. Somatic Cell Mol. Genet. 20, 27–38 (1994).

    Article  CAS  Google Scholar 

  • Duyao, M.P. et al. Homozygous inactivation of the mouse Hdh gene does not produce a Huntington's disease-like phenotype. Science. 269, 407–410 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Zeitlin, S. et al. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nature Genet. 11, 155–162 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Myers, R.H. et al. Homozygote for Huntington's disease. Am. J. Hum. Genet. 45, 615–618 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wexler, N.S. et al. Homozygotes for Huntington's disease. Nature. 326, 194–197 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Nasir, J. et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell. 81, 811–823 (1995).

    Article  CAS  PubMed  Google Scholar 

  • MacDonald, M.E. & Gusella, J.F. Huntington's disease: translating a CAG repeat into a pathogenic mechanism. Curr. Opin. Neurobiol. 6, 638–650 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Barnes, G.T. et al. Mouse Huntington's disease gene homolog (Hdh). Somat. Cell Mol. Genet. 20, 87–97 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Lin, B. et al. Sequence of the murine Huntington disease gene: evidence for conservation, alternate splicing and polymorphism in a triplet (CCG) repeat [published erratum appears in Hum. Mol. Genet. 3, 530 (1994)]. Hum. Mol. Genet. 3, 85–92 (1994).

    Google Scholar 

  • MacDonald, M.E. et al. Targeted inactivation of the mouse Huntington disease homologue Hdh . Cold Spring Harbor Symp Quant. Biol. 61, 627–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Lin, B. et al. Structural analysis of the 5′ region of mouse and human Huntington disease genes reveals conservation of putative promoter region and di- and trinucleotide polymorphisms. Genomics. 25, 707–715 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Stumpo, D.J. et al. MARCKS deficiency in mice leads to abnormal brain development and perinatal death. Proc. Natl. Acad. Sci. USA. 92, 944–948 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, M. et al. Neural tube defects and abnormal brain development in F52-deficient mice. Proc. Natl. Acad. Sci. USA. 93, 2110–2115 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui, C.-C. & Joyner,, A.L A mouse model of Greig cephalo-polysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the GH3 gene. Nature Genet. 3, 241–246 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Shah, V. et al. A subset of p53-deficient embryos exhibit exencephaly. Nature Genet. 10, 175–180 (1995).

    Article  Google Scholar 

  • Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature. 384, 368–372 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Gusella, J.F., Persichetti, F. & MacDonald, M.E. The genetic defect causing Huntington's disease: repeated in other contexts. Mol. Med. 3, 238–246 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bingham, P.M. et al. Stability of an expanded trinucleotide repeat in the androgen receptor gene in transgenic mice [published erratum appears in. Nature Genet. 9, 191–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, Y.P. et al. Absence of disease phenotype and intergenerational stability of the CAG repeat in transgenic mice expressing the human Huntington disease transcript. Hum. Mol. Genet. 5, 177–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, H. et al. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo . Nature Genet. 13, 196–202 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Burright, E.N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell. 82, 937–948 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Mangiarini, L.E. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 87, 493–506 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Hanks, M. et al. Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2 . Science. 269, 679–682 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Warner, J.P., Barren, L.H. & Brock, D.J. A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington's disease chromosomes. Mol. Cell. Probes. 7, 235–239 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Nagy, A. et al. Derivation of completely cell culture–derived mice from early-passage embryonic stem cells. Proc Natl. Acad. Sci. USA. 90, 8424–8428 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurst, W. & Joyner, A.L. Production of targeted embryonic stem cell clones in Gene Targeting: A Practical Approach (ed. A.L. Joyner) 33–62 (Oxford University Press, Oxford, UK, 1993).

    Google Scholar 

  • Nagy, A. & Rossant, J. Production of completely ES cell-derived fetuses. in Gene Targeting: A Practical Approach (ed. A.L. Joyner) 147–180 (Oxford University Press, Oxford, UK, 1993).

  • Miller, M.W. & Nowakowski, R.S. Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system. Brain Res. 457, 44–52 (1988).

    Article  CAS  PubMed  Google Scholar