nature.com

Adaptive evolution of bacterial metabolic networks by horizontal gene transfer - Nature Genetics

  • ️Lercher, Martin J
  • ️Sun Nov 20 2005

References

  1. Schmidt, S., Sunyaev, S., Bork, P. & Dandekar, T. Metabolites: a helping hand for pathway evolution? Trends Biochem. Sci. 28, 336–341 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Lawrence, J.G. & Hendrickson, H. Lateral gene transfer: when will adolescence end? Mol. Microbiol. 50, 739–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Lerat, E., Daubin, V., Ochman, H. & Moran, N.A. Evolutionary origins of genomic repertoires in bacteria. PLoS Biol. 3, e130 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Teichmann, S.A. et al. The evolution and structural anatomy of the small molecule metabolic pathways in Escherichia coli. J. Mol. Biol. 311, 693–708 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Rison, S.C., Teichmann, S.A. & Thornton, J.M. Homology, pathway distance and chromosomal localization of the small molecule metabolism enzymes in Escherichia coli. J. Mol. Biol. 318, 911–932 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Alves, R., Chaleil, R.A. & Sternberg, M.J. Evolution of enzymes in metabolism: a network perspective. J. Mol. Biol. 320, 751–770 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Reed, J.L., Vo, T.D., Schilling, C.H. & Palsson, B.O. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4, R54 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lawrence, J.G., Hartl, D.L. & Ochman, H. Molecular considerations in the evolution of bacterial genes. J. Mol. Evol. 33, 241–250 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Ochman, H. & Groisman, E.A. The origin and evolution of species differences in Escherichia coli and Salmonella typhimurium. EXS 69, 479–493 (1994).

    CAS  PubMed  Google Scholar 

  10. Snel, B., Bork, P. & Huynen, M.A. Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res. 12, 17–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Mirkin, B.G., Fenner, T.I., Galperin, M.Y. & Koonin, E.V. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol. Biol. 3, 2 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Boussau, B., Karlberg, E.O., Frank, A.C., Legault, B.A. & Andersson, S.G. Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc. Natl. Acad. Sci. USA 101, 9722–9727 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lawrence, J.G. & Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95, 9413–9417 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keseler, I.M. et al. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res. 33, D334–D337 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Papp, B., Pál, C. & Hurst, L.D. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429, 661–664 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Hooper, S.D. & Berg, O.G. On the nature of gene innovation: duplication patterns in microbial genomes. Mol. Biol. Evol. 20, 945–954 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Gerdes, S.Y. et al. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185, 5673–5684 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thatcher, J.W., Shaw, J.M. & Dickinson, W.J. Marginal fitness contributions of nonessential genes in yeast. Proc. Natl. Acad. Sci. USA 95, 253–257 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Price, N.D., Reed, J.L. & Palsson, B.O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Segre, D., Vitkup, D. & Church, G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112–15117 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reed, J.L. & Palsson, B.O. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 14, 1797–1805 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taoka, M. et al. Only a small subset of the horizontally transferred chromosomal genes in Escherichia coli are translated into proteins. Mol. Cell. Proteomics 3, 780–787 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Burgard, A.P., Nikolaev, E.V., Schilling, C.H. & Maranas, C.D. Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res. 14, 301–312 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Snel, B. & Huynen, M.A. Quantifying modularity in the evolution of biomolecular systems. Genome Res. 14, 391–397 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salgado, H. et al. RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res. 32, D303–D306 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jain, R., Rivera, M.C. & Lake, J.A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA 96, 3801–3806 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N. & Barabasi, A.L. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427, 839–843 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. von Mering, C. et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33, D433–D437 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Forster, J., Famili, I., Fu, P., Palsson, B.O. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kellis, M., Birren, B.W. & Lander, E.S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references