Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta - Nature Genetics
- ️Marini, Joan C
- ️Sun Feb 04 2007
References
Byers, P.H. & Cole, W.G. Osteogenesis imperfecta. in Connective Tissue and Its Heritable Disorders (eds. Royce, P.M. & Steinmann, B.) 385–430 (Wiley-Liss, Inc., New York, 2002).
Marini, J.C. Osteogenesis imperfecta. in Nelson Textbook of Pediatrics 17th ed. (eds. Behrman, R.E., Kliegman, R.M. & Jenson, H.B.) 2336–2338 (Saunders, Philadelphia, 2004).
Sillence, D.O., Senn, A. & Danks, D.M. Genetic heterogeneity in osteogenesis imperfecta. J. Med. Genet. 16, 101–116 (1979).
Aitchison, K., Ogilvie, D., Honeyman, M., Thompson, E. & Sykes, B. Homozygous osteogenesis imperfecta unlinked to collagen I genes. Hum. Genet. 78, 233–236 (1988).
Wallis, G.A. et al. Osteogenesis imperfecta type III: mutations in the type I collagen structural genes, COL1A1 and COL1A2, are not necessarily responsible. J. Med. Genet. 30, 492–496 (1993).
Daw, S.C., Nicholls, A.C., Williams, M., Sykes, B. & Pope, F.M. Autosomal recessive Osteogenesis imperfecta. Excess post translational modification of collagen not linked to either COL1A1 or COL1A2. J. Med. Genet. 25, 275 (1988).
Wassenhove-McCarthy, D.J. & McCarthy, K.J. Molecular characterization of a novel basement membrane-associated proteoglycan, leprecan. J. Biol. Chem. 274, 25004–25017 (1999).
Kaul, S.C., Sugihara, T., Yoshida, A., Nomura, H. & Wadhwa, R. Gros1, a potential growth suppressor on chromosome 1: its identity to basement membrane-associated proteoglycan, leprecan. Oncogene 19, 3576–3583 (2000).
Vranka, J.A., Sakai, L.Y. & Bachinger, H.P. Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes. J. Biol. Chem. 279, 23615–23621 (2004).
Morello, R. et al. CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127, 291–304 (2006).
Myllyharju, J. & Kivirikko, K.I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20, 33–43 (2004).
Raghunath, M., Bruckner, P. & Steinmann, B. Delayed triple helix formation of mutant collagen from patients with osteogenesis imperfecta. J. Mol. Biol. 236, 940–949 (1994).
Fietzek, P.P., Rexrodt, F.W., Wendt, P., Stark, M. & Kuhn, K. The covalent structure of collagen. Amino-acid sequence of peptide 1–CB6-C2. Eur. J. Biochem. 30, 163–168 (1972).
Tryggvason, K., Majamaa, K., Risteli, J. & Kivirikko, K.I. Partial purification and characterization of chick-embryo prolyl 3-hydroxylase. Biochem. J. 183, 303–307 (1979).
Labuda, M. et al. Osteogenesis imperfecta type VII maps to the short arm of chromosome 3. Bone 31, 19–25 (2002).
Tonachini, L. et al. cDNA cloning, characterization and chromosome mapping of the gene encoding human cartilage associated protein (CRTAP). Cytogenet. Cell Genet. 87, 191–194 (1999).
Ward, L.M. et al. Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone 31, 12–18 (2002).
Barnes, A.M. et al. Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N. Engl. J. Med. 355, 2757–2764 (2006).
Noensie, E.N. & Dietz, H.C. A strategy for disease gene identification through nonsense-mediated mRNA decay inhibition. Nat. Biotechnol. 19, 434–439 (2001).
Jarnum, S. et al. LEPREL1, a novel ER and Golgi resident member of the Leprecan family. Biochem. Biophys. Res. Commun. 317, 342–351 (2004).
Torre-Blanco, A. et al. Temperature-induced post-translational over-modification of type I procollagen. Effects of over-modification of the protein on the rate of cleavage by procollagen N-proteinase and on self-assembly of collagen into fibrils. J. Biol. Chem. 267, 2650–2655 (1992).
Jenkins, C.L., Bretscher, L.E., Guzei, I.A. & Raines, R.T. Effect of 3-hydroxyproline residues on collagen stability. J. Am. Chem. Soc. 125, 6422–6427 (2003).
Mizuno, K., Hayashi, T., Peyton, D.H. & Bachinger, H.P. The peptides acetyl-(Gly-3(S)Hyp-4(R)Hyp)10–NH2 and acetyl-(Gly-Pro-3(S)Hyp)10–NH2 do not form a collagen triple helix. J. Biol. Chem. 279, 282–287 (2004).
Schumacher, M.A., Mizuno, K. & Bachinger, H.P. The crystal structure of a collagen-like polypeptide with 3(S)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix. J. Biol. Chem. 281, 27566–27574 (2006).
Royce, P.M. & Barnes, M.J. Failure of highly purified lysyl hydroxylase to hydroxylate lysyl residues in the non-helical regions of collagen. Biochem. J. 230, 475–480 (1985).
Wang, C. et al. The third activity for lysyl hydroxylase 3: galactosylation of hydroxylysyl residues in collagens in vitro. Matrix Biol. 21, 559–566 (2002).
Wu, J. et al. Functional diversity of lysyl hydroxylase 2 in collagen synthesis of human dermal fibroblasts. Exp. Cell Res. 312, 3485–3494 (2006).
Kefalides, N.A. Structure and biosynthesis of basement membranes. Int. Rev. Connect. Tissue Res. 6, 63–104 (1973).
Cabral, W.A. et al. Type I collagen triplet duplication mutation in lethal osteogenesis imperfecta shifts register of alpha chains throughout the helix and disrupts incorporation of mutant helices into fibrils and extracellular matrix. J. Biol. Chem. 278, 10006–10012 (2003).
Forlino, A. et al. Phenotypic comparison of an osteogenesis imperfecta type IV proband with a de novo alpha2(I) Gly922 → Ser substitution in type I collagen and an unrelated patient with an identical mutation. Biochem. Mol. Med. 62, 26–35 (1997).