nature.com

Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta - Nature Genetics

  • ️Marini, Joan C
  • ️Sun Feb 04 2007

References

  1. Byers, P.H. & Cole, W.G. Osteogenesis imperfecta. in Connective Tissue and Its Heritable Disorders (eds. Royce, P.M. & Steinmann, B.) 385–430 (Wiley-Liss, Inc., New York, 2002).

    Chapter  Google Scholar 

  2. Marini, J.C. Osteogenesis imperfecta. in Nelson Textbook of Pediatrics 17th ed. (eds. Behrman, R.E., Kliegman, R.M. & Jenson, H.B.) 2336–2338 (Saunders, Philadelphia, 2004).

    Google Scholar 

  3. Sillence, D.O., Senn, A. & Danks, D.M. Genetic heterogeneity in osteogenesis imperfecta. J. Med. Genet. 16, 101–116 (1979).

    Article  CAS  Google Scholar 

  4. Aitchison, K., Ogilvie, D., Honeyman, M., Thompson, E. & Sykes, B. Homozygous osteogenesis imperfecta unlinked to collagen I genes. Hum. Genet. 78, 233–236 (1988).

    Article  CAS  Google Scholar 

  5. Wallis, G.A. et al. Osteogenesis imperfecta type III: mutations in the type I collagen structural genes, COL1A1 and COL1A2, are not necessarily responsible. J. Med. Genet. 30, 492–496 (1993).

    Article  CAS  Google Scholar 

  6. Daw, S.C., Nicholls, A.C., Williams, M., Sykes, B. & Pope, F.M. Autosomal recessive Osteogenesis imperfecta. Excess post translational modification of collagen not linked to either COL1A1 or COL1A2. J. Med. Genet. 25, 275 (1988).

    Google Scholar 

  7. Wassenhove-McCarthy, D.J. & McCarthy, K.J. Molecular characterization of a novel basement membrane-associated proteoglycan, leprecan. J. Biol. Chem. 274, 25004–25017 (1999).

    Article  CAS  Google Scholar 

  8. Kaul, S.C., Sugihara, T., Yoshida, A., Nomura, H. & Wadhwa, R. Gros1, a potential growth suppressor on chromosome 1: its identity to basement membrane-associated proteoglycan, leprecan. Oncogene 19, 3576–3583 (2000).

    Article  CAS  Google Scholar 

  9. Vranka, J.A., Sakai, L.Y. & Bachinger, H.P. Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes. J. Biol. Chem. 279, 23615–23621 (2004).

    Article  CAS  Google Scholar 

  10. Morello, R. et al. CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127, 291–304 (2006).

    Article  CAS  Google Scholar 

  11. Myllyharju, J. & Kivirikko, K.I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20, 33–43 (2004).

    Article  CAS  Google Scholar 

  12. Raghunath, M., Bruckner, P. & Steinmann, B. Delayed triple helix formation of mutant collagen from patients with osteogenesis imperfecta. J. Mol. Biol. 236, 940–949 (1994).

    Article  CAS  Google Scholar 

  13. Fietzek, P.P., Rexrodt, F.W., Wendt, P., Stark, M. & Kuhn, K. The covalent structure of collagen. Amino-acid sequence of peptide 1–CB6-C2. Eur. J. Biochem. 30, 163–168 (1972).

    Article  CAS  Google Scholar 

  14. Tryggvason, K., Majamaa, K., Risteli, J. & Kivirikko, K.I. Partial purification and characterization of chick-embryo prolyl 3-hydroxylase. Biochem. J. 183, 303–307 (1979).

    Article  CAS  Google Scholar 

  15. Labuda, M. et al. Osteogenesis imperfecta type VII maps to the short arm of chromosome 3. Bone 31, 19–25 (2002).

    Article  CAS  Google Scholar 

  16. Tonachini, L. et al. cDNA cloning, characterization and chromosome mapping of the gene encoding human cartilage associated protein (CRTAP). Cytogenet. Cell Genet. 87, 191–194 (1999).

    Article  CAS  Google Scholar 

  17. Ward, L.M. et al. Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone 31, 12–18 (2002).

    Article  CAS  Google Scholar 

  18. Barnes, A.M. et al. Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N. Engl. J. Med. 355, 2757–2764 (2006).

    Article  CAS  Google Scholar 

  19. Noensie, E.N. & Dietz, H.C. A strategy for disease gene identification through nonsense-mediated mRNA decay inhibition. Nat. Biotechnol. 19, 434–439 (2001).

    Article  CAS  Google Scholar 

  20. Jarnum, S. et al. LEPREL1, a novel ER and Golgi resident member of the Leprecan family. Biochem. Biophys. Res. Commun. 317, 342–351 (2004).

    Article  CAS  Google Scholar 

  21. Torre-Blanco, A. et al. Temperature-induced post-translational over-modification of type I procollagen. Effects of over-modification of the protein on the rate of cleavage by procollagen N-proteinase and on self-assembly of collagen into fibrils. J. Biol. Chem. 267, 2650–2655 (1992).

    CAS  PubMed  Google Scholar 

  22. Jenkins, C.L., Bretscher, L.E., Guzei, I.A. & Raines, R.T. Effect of 3-hydroxyproline residues on collagen stability. J. Am. Chem. Soc. 125, 6422–6427 (2003).

    Article  CAS  Google Scholar 

  23. Mizuno, K., Hayashi, T., Peyton, D.H. & Bachinger, H.P. The peptides acetyl-(Gly-3(S)Hyp-4(R)Hyp)10–NH2 and acetyl-(Gly-Pro-3(S)Hyp)10–NH2 do not form a collagen triple helix. J. Biol. Chem. 279, 282–287 (2004).

    Article  CAS  Google Scholar 

  24. Schumacher, M.A., Mizuno, K. & Bachinger, H.P. The crystal structure of a collagen-like polypeptide with 3(S)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix. J. Biol. Chem. 281, 27566–27574 (2006).

    Article  CAS  Google Scholar 

  25. Royce, P.M. & Barnes, M.J. Failure of highly purified lysyl hydroxylase to hydroxylate lysyl residues in the non-helical regions of collagen. Biochem. J. 230, 475–480 (1985).

    Article  CAS  Google Scholar 

  26. Wang, C. et al. The third activity for lysyl hydroxylase 3: galactosylation of hydroxylysyl residues in collagens in vitro. Matrix Biol. 21, 559–566 (2002).

    Article  CAS  Google Scholar 

  27. Wu, J. et al. Functional diversity of lysyl hydroxylase 2 in collagen synthesis of human dermal fibroblasts. Exp. Cell Res. 312, 3485–3494 (2006).

    Article  CAS  Google Scholar 

  28. Kefalides, N.A. Structure and biosynthesis of basement membranes. Int. Rev. Connect. Tissue Res. 6, 63–104 (1973).

    Article  CAS  Google Scholar 

  29. Cabral, W.A. et al. Type I collagen triplet duplication mutation in lethal osteogenesis imperfecta shifts register of alpha chains throughout the helix and disrupts incorporation of mutant helices into fibrils and extracellular matrix. J. Biol. Chem. 278, 10006–10012 (2003).

    Article  CAS  Google Scholar 

  30. Forlino, A. et al. Phenotypic comparison of an osteogenesis imperfecta type IV proband with a de novo alpha2(I) Gly922 → Ser substitution in type I collagen and an unrelated patient with an identical mutation. Biochem. Mol. Med. 62, 26–35 (1997).

    Article  CAS  Google Scholar 

Download references