Silica burial enhanced by iron limitation in oceanic upwelling margins - Nature Geoscience
- ️Hinton, R.
- ️Sun Jun 08 2014
References
Nelson, D. M., Treguer, P., Brzezinski, M. A., Leynaert, A. & Queguiner, B. Production and dissolution of biogenic silica in the ocean—revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9, 359–372 (1995).
Ragueneau, O. et al. A review of the Si cycle in the modem ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Glob. Planet. Change 26, 317–365 (2000).
Archer, D. & Maier-reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263 (1994).
Brzezinski, M. A. The Si–C–N ratio of marine diatoms-interspecific variability and the effect of some environmental variables. J. Phycol. 21, 347–357 (1985).
Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).
Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Glob. Biogeochem. Cycles 18, GB4028 (2004).
Dugdale, R. C., Wilkerson, F. P. & Minas, H. J. The role of a silicate pump in driving new production. Deep-Sea Res. I 42, 697–719 (1995).
Dugdale, R. C. & Wilkerson, F. P. Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391, 270–273 (1998).
Tréguer, P. et al. The silica balance in the world ocean: A reestimate. Science 268, 375–379 (1995).
Broecker, W. S. & Peng, T. H. Tracers in the Sea (Eldigio Press, 1984).
Tréguer, P. & De La Rocha, C. The world ocean silica cycle. Ann. Rev. Mar. Sci. 5, 477–501 (2013).
Sirocko, F. Deep-sea sediments of the arabian sea—a paleoclimatic record of the southwest-asian summer monsoon. Geol. Rundsch. 80, 557–566 (1991).
Demaster, D. J. The supply and accumulation of silica in the marine-environment. Geochim. Cosmochim. Acta 45, 1715–1732 (1981).
Thunell, R. C. Seasonal and annual variability in particle fluxes in the Gulf of California: A response to climate forcing. Deep-Sea Res. I 45, 2059–2083 (1998).
Honjo, S., Steven, J. M., Richard, A. K. & Roger, F. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. Prog. Oceanogr. 76, 217–285 (2008).
Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).
Brand, L. E. Minimum iron requirements of marine-phytoplankton and the implications for the biogeochemical control of new production. Limnol. Oceanogr. 36, 1756–1771 (1991).
Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).
Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).
Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).
Brzezinski, M. A. et al. A switch from Si(OH)(4) to NO3-depletion in the glacial Southern Ocean. Geophys. Res. Lett. 29, 1564 (2002).
Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).
Firme, G. F., Rue, E. L., Weeks, D. A., Bruland, K. W. & Hutchins, D. A. Spatial and temporal variability in phytoplankton iron limitation along the California coast and consequences for Si, N, and C biogeochemistry. Glob. Biogeochem. Cycles 17, 1016 (2003).
Fitzwater, S. E. et al. Iron, nutrient and phytoplankton biomass relationships in upwelled waters of the California coastal system. Cont. Shelf Res. 23, 1523–1544 (2003).
Chase, Z. et al. Manganese and iron distributions off central California influenced by upwelling and shelf width. Mar. Chem. 95, 235–254 (2005).
Calvert, S. E. Accumulation of diatomaceous silica in the sediments of Gulf of California. Geol. Soc. Am. Bull. 77, 569–596 (1966).
Pichevin, L. et al. Silicic acid biogeochemistry in the Gulf of California: Insights from sedimentary Si isotopes. Paleoceanography 27, PA2201 (2012).
Segovia-Zavala, J. A., Lares, M. L., Delgadillo-Hinojosa, F., Tovar-Sanchez, A. & Sanudo-Wilhelmy, S. A. Dissolved iron distributions in the central region of the Gulf of California, Mexico. Deep-Sea Res. I 57, 53–64 (2010).
Twining, B. S. et al. Metal quotas of plankton in the equatorial Pacific Ocean. Deep-Sea Res. II 58, 325–341 (2011).
Arellano-Torres, E., Pichevin, L. E. & Ganeshram, R. S. High-resolution opal records from the eastern tropical Pacific provide evidence for silicic acid leakage from HNLC regions during glacial periods. Quat. Sci. Rev. 30, 1112–1121 (2011).
De la Rocha, C. L., Brzezinski, M. A. & DeNiro, M. J. A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim. Cosmochim. Acta 64, 2467–2477 (2000).
Reynolds, B. C., Frank, M. & Halliday, A. N. Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth Planet. Sci. Lett. 244, 431–443 (2006).
Franck, V. M., Brzezinski, M. A., Coale, K. H. & Nelson, D. M. Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep-Sea Res. II 47, 3315–3338 (2000).
Georg, R. B., Reynolds, B. C., Frank, M. & Halliday, A. N. New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chem. Geol. 235, 95–104 (2006).
Reynolds, B. C., Georg, R. B., Oberli, F., Wiechert, U. H. & Halliday, A. N. Re-assessment of silicon isotope reference materials using high-resolution multi-collector ICP-MS. J. Anal. At. Spectrom. 21, 266–269 (2006).
Morley, D. W. et al. Cleaning of lake sediment samples for diatom oxygen isotope analysis. J. Paleolimnol. 31, 391–401 (2004).
Ellwood, M. J. & Hunter, K. A. Determination of the Zn/Si ratio in diatom opal: A method for the separation, cleaning and dissolution of diatoms. Mar. Chem. 66, 149–160 (1999).