nature.com

Silica burial enhanced by iron limitation in oceanic upwelling margins - Nature Geoscience

  • ️Hinton, R.
  • ️Sun Jun 08 2014

References

  1. Nelson, D. M., Treguer, P., Brzezinski, M. A., Leynaert, A. & Queguiner, B. Production and dissolution of biogenic silica in the ocean—revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9, 359–372 (1995).

    Article  Google Scholar 

  2. Ragueneau, O. et al. A review of the Si cycle in the modem ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Glob. Planet. Change 26, 317–365 (2000).

    Article  Google Scholar 

  3. Archer, D. & Maier-reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263 (1994).

    Article  Google Scholar 

  4. Brzezinski, M. A. The Si–C–N ratio of marine diatoms-interspecific variability and the effect of some environmental variables. J. Phycol. 21, 347–357 (1985).

    Article  Google Scholar 

  5. Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).

    Article  Google Scholar 

  6. Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Glob. Biogeochem. Cycles 18, GB4028 (2004).

    Article  Google Scholar 

  7. Dugdale, R. C., Wilkerson, F. P. & Minas, H. J. The role of a silicate pump in driving new production. Deep-Sea Res. I 42, 697–719 (1995).

    Article  Google Scholar 

  8. Dugdale, R. C. & Wilkerson, F. P. Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391, 270–273 (1998).

    Article  Google Scholar 

  9. Tréguer, P. et al. The silica balance in the world ocean: A reestimate. Science 268, 375–379 (1995).

    Article  Google Scholar 

  10. Broecker, W. S. & Peng, T. H. Tracers in the Sea (Eldigio Press, 1984).

    Google Scholar 

  11. Tréguer, P. & De La Rocha, C. The world ocean silica cycle. Ann. Rev. Mar. Sci. 5, 477–501 (2013).

    Article  Google Scholar 

  12. Sirocko, F. Deep-sea sediments of the arabian sea—a paleoclimatic record of the southwest-asian summer monsoon. Geol. Rundsch. 80, 557–566 (1991).

    Article  Google Scholar 

  13. Demaster, D. J. The supply and accumulation of silica in the marine-environment. Geochim. Cosmochim. Acta 45, 1715–1732 (1981).

    Article  Google Scholar 

  14. Thunell, R. C. Seasonal and annual variability in particle fluxes in the Gulf of California: A response to climate forcing. Deep-Sea Res. I 45, 2059–2083 (1998).

    Article  Google Scholar 

  15. Honjo, S., Steven, J. M., Richard, A. K. & Roger, F. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. Prog. Oceanogr. 76, 217–285 (2008).

    Article  Google Scholar 

  16. Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    Article  Google Scholar 

  17. Brand, L. E. Minimum iron requirements of marine-phytoplankton and the implications for the biogeochemical control of new production. Limnol. Oceanogr. 36, 1756–1771 (1991).

    Article  Google Scholar 

  18. Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).

    Article  Google Scholar 

  19. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).

    Article  Google Scholar 

  20. Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).

    Article  Google Scholar 

  21. Brzezinski, M. A. et al. A switch from Si(OH)(4) to NO3-depletion in the glacial Southern Ocean. Geophys. Res. Lett. 29, 1564 (2002).

    Article  Google Scholar 

  22. Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).

    Article  Google Scholar 

  23. Firme, G. F., Rue, E. L., Weeks, D. A., Bruland, K. W. & Hutchins, D. A. Spatial and temporal variability in phytoplankton iron limitation along the California coast and consequences for Si, N, and C biogeochemistry. Glob. Biogeochem. Cycles 17, 1016 (2003).

    Article  Google Scholar 

  24. Fitzwater, S. E. et al. Iron, nutrient and phytoplankton biomass relationships in upwelled waters of the California coastal system. Cont. Shelf Res. 23, 1523–1544 (2003).

    Article  Google Scholar 

  25. Chase, Z. et al. Manganese and iron distributions off central California influenced by upwelling and shelf width. Mar. Chem. 95, 235–254 (2005).

    Article  Google Scholar 

  26. Calvert, S. E. Accumulation of diatomaceous silica in the sediments of Gulf of California. Geol. Soc. Am. Bull. 77, 569–596 (1966).

    Article  Google Scholar 

  27. Pichevin, L. et al. Silicic acid biogeochemistry in the Gulf of California: Insights from sedimentary Si isotopes. Paleoceanography 27, PA2201 (2012).

    Article  Google Scholar 

  28. Segovia-Zavala, J. A., Lares, M. L., Delgadillo-Hinojosa, F., Tovar-Sanchez, A. & Sanudo-Wilhelmy, S. A. Dissolved iron distributions in the central region of the Gulf of California, Mexico. Deep-Sea Res. I 57, 53–64 (2010).

    Article  Google Scholar 

  29. Twining, B. S. et al. Metal quotas of plankton in the equatorial Pacific Ocean. Deep-Sea Res. II 58, 325–341 (2011).

    Article  Google Scholar 

  30. Arellano-Torres, E., Pichevin, L. E. & Ganeshram, R. S. High-resolution opal records from the eastern tropical Pacific provide evidence for silicic acid leakage from HNLC regions during glacial periods. Quat. Sci. Rev. 30, 1112–1121 (2011).

    Article  Google Scholar 

  31. De la Rocha, C. L., Brzezinski, M. A. & DeNiro, M. J. A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim. Cosmochim. Acta 64, 2467–2477 (2000).

    Article  Google Scholar 

  32. Reynolds, B. C., Frank, M. & Halliday, A. N. Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth Planet. Sci. Lett. 244, 431–443 (2006).

    Article  Google Scholar 

  33. Franck, V. M., Brzezinski, M. A., Coale, K. H. & Nelson, D. M. Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep-Sea Res. II 47, 3315–3338 (2000).

    Article  Google Scholar 

  34. Georg, R. B., Reynolds, B. C., Frank, M. & Halliday, A. N. New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chem. Geol. 235, 95–104 (2006).

    Article  Google Scholar 

  35. Reynolds, B. C., Georg, R. B., Oberli, F., Wiechert, U. H. & Halliday, A. N. Re-assessment of silicon isotope reference materials using high-resolution multi-collector ICP-MS. J. Anal. At. Spectrom. 21, 266–269 (2006).

    Article  Google Scholar 

  36. Morley, D. W. et al. Cleaning of lake sediment samples for diatom oxygen isotope analysis. J. Paleolimnol. 31, 391–401 (2004).

    Article  Google Scholar 

  37. Ellwood, M. J. & Hunter, K. A. Determination of the Zn/Si ratio in diatom opal: A method for the separation, cleaning and dissolution of diatoms. Mar. Chem. 66, 149–160 (1999).

    Article  Google Scholar 

Download references