nature.com

Innate and adaptive immune cells in the tumor microenvironment - Nature Immunology

  • ️Fu, Yang-Xin
  • ️Wed Sep 18 2013
  • van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991).

    CAS  PubMed  Google Scholar 

  • Topalian, S.L. et al. Recognition of shared melanoma antigens by human tumor-infiltrating lymphocytes. J. Immunother. 12, 203–206 (1992).

    CAS  PubMed  Google Scholar 

  • Monach, P.A., Meredith, S.C., Siegel, C.T. & Schreiber, H. A unique tumor antigen produced by a single amino acid substitution. Immunity 2, 45–59 (1995).

    CAS  PubMed  Google Scholar 

  • Hodi, F.S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brichard, V.G. & Lejeune, D. GSK's antigen-specific cancer immunotherapy programme: pilot results leading to Phase III clinical development. Vaccine 25 (suppl. 2), B61–B71 (2007).

    CAS  PubMed  Google Scholar 

  • Boon, T., Gajewski, T.F. & Coulie, P.G. From defined human tumor antigens to effective immunization? Immunol. Today 16, 334–336 (1995).

    CAS  PubMed  Google Scholar 

  • Bos, R., Marquardt, K.L., Cheung, J. & Sherman, L.A. Functional differences between low- and high-affinity CD8+ T cells in the tumor environment. OncoImmunology 1, 1239–1247 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Engels, B. et al. Relapse or eradication of cancer is predicted by peptide-major histocompatibility complex affinity. Cancer Cell 23, 516–526 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins, P.F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 19, 747–752 (2013). This is the first study to define mutated antigens through exome sequencing as the major targets for tumor-infiltrating lymphocytes in human melanoma patients.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen, M. et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE 2, e796 (2007).

    PubMed  PubMed Central  Google Scholar 

  • Pages, F. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353, 2654–2666 (2005).

    CAS  PubMed  Google Scholar 

  • Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006). These data suggest that activated CD8+ T cells in the tumor microenvironment can have powerful prognostic importance in patients with colorectal cancer.

    CAS  PubMed  Google Scholar 

  • Mlecnik, B. et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J. Clin. Oncol. 29, 610–618 (2011).

    PubMed  Google Scholar 

  • Galon, J. et al. Cancer classification using the Immunoscore: a worldwide task force. J. Transl. Med. 10, 205 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Azimi, F. et al. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J. Clin. Oncol. 30, 2678–2683 (2012).

    PubMed  Google Scholar 

  • Kreike, B. et al. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res. 9, R65 (2007).

    PubMed  PubMed Central  Google Scholar 

  • Mahmoud, S.M. et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J. Clin. Oncol. 29, 1949–1955 (2011).

    PubMed  Google Scholar 

  • Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    CAS  PubMed  Google Scholar 

  • Rusakiewicz, S. et al. Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res. 73, 3499–3510 (2013).

    CAS  PubMed  Google Scholar 

  • Curiel, T.J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).

    CAS  PubMed  Google Scholar 

  • Bui, J.D. & Schreiber, R.D. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr. Opin. Immunol. 19, 203–208 (2007).

    CAS  PubMed  Google Scholar 

  • Pufnock, J.S. & Rothstein, J.L. Oncoprotein signaling mediates tumor-specific inflammation and enhances tumor progression. J. Immunol. 182, 5498–5506 (2009).

    CAS  PubMed  Google Scholar 

  • Russell, J.P. et al. Tyrosine kinase oncoprotein, RET/PTC3, induces the secretion of myeloid growth and chemotactic factors. Oncogene 22, 4569–4577 (2003).

    CAS  PubMed  Google Scholar 

  • Harlin, H., Kuna, T.V., Peterson, A.C., Meng, Y. & Gajewski, T.F. Tumor progression despite massive influx of activated CD8+ T cells in a patient with malignant melanoma ascites. Cancer Immunol. Immunother. 55, 1185–1197 (2006).

    CAS  PubMed  Google Scholar 

  • Mortarini, R. et al. Lack of terminally differentiated tumor-specific CD8+ T cells at tumor site in spite of antitumor immunity to self-antigens in human metastatic melanoma. Cancer Res. 63, 2535–2545 (2003).

    CAS  PubMed  Google Scholar 

  • Appay, V. et al. New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J. Immunol. 177, 1670–1678 (2006).

    CAS  PubMed  Google Scholar 

  • Rosenberg, S.A. & Dudley, M.E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 21, 233–240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gajewski, T.F. Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin. Cancer Res. 13, 5256–5261 (2007).

    CAS  PubMed  Google Scholar 

  • Spranger, S. et al. Upregulation of PD-L1, IDO and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci. Transl. Med. (in the press).

  • Chen, L. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71, 1093–1102 (1992).

    CAS  PubMed  Google Scholar 

  • Brown, I.E., Blank, C., Kline, J., Kacha, A.K. & Gajewski, T.F. Homeostatic proliferation as an isolated variable reverses CD8+ T cell anergy and promotes tumor rejection. J. Immunol. 177, 4521–4529 (2006).

    CAS  PubMed  Google Scholar 

  • Zheng, Y. et al. Egr2-dependent gene expression profiling and ChIP-seq reveal novel biologic targets in T cell anergy. Mol. Immunol. 55, 283–291 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuertes, M.B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J. Exp. Med. 208, 2005–2016 (2011). This study first described the requirement for host type I interferon signaling in the innate immune sensing of cancer as a bridge to a spontaneous adaptive immune response.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuertes, M.B., Woo, S.R., Burnett, B., Fu, Y.X. & Gajewski, T.F. Type I interferon response and innate immune sensing of cancer. Trends Immunol. 34, 67–73 (2013).

    CAS  PubMed  Google Scholar 

  • Diamond, M.S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn, G.P. et al. A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 6, 722–729 (2005).

    CAS  PubMed  Google Scholar 

  • Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gajewski, T.F., Fuertes, M.B. & Woo, S.R. Innate immune sensing of cancer: clues from an identified role for type I IFNs. Cancer Immunol. Immunother. 61, 1343–1347 (2012).

    CAS  PubMed  Google Scholar 

  • Barber, G.N. Cytoplasmic DNA innate immune pathways. Immunol. Rev. 243, 99–108 (2011).

    CAS  PubMed  Google Scholar 

  • Sancho, D. et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J. Clin. Invest. 118, 2098–2110 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zelenay, S. et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Invest. 122, 1615–1627 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahrens, S. et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36, 635–645 (2012).

    CAS  PubMed  Google Scholar 

  • Wei, S. et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res. 65, 5020–5026 (2005).

    CAS  PubMed  Google Scholar 

  • Lou, Y. et al. Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor immune responses. J. Immunol. 178, 1534–1541 (2007).

    CAS  PubMed  Google Scholar 

  • Liu, C. et al. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice. J. Clin. Invest. 118, 1165–1175 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demoulin, S., Herfs, M., Delvenne, P. & Hubert, P. Tumor microenvironment converts plasmacytoid dendritic cells into immunosuppressive/tolerogenic cells: insight into the molecular mechanisms. J. Leukoc. Biol. 93, 343–352 (2013).

    CAS  PubMed  Google Scholar 

  • Sisirak, V. et al. Impaired IFN-alpha production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Cancer Res. 72, 5188–5197 (2012).

    CAS  PubMed  Google Scholar 

  • Chen, W., Liang, X., Peterson, A.J., Munn, D.H. & Blazar, B.R. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J. Immunol. 181, 5396–5404 (2008).

    CAS  PubMed  Google Scholar 

  • Watkins, S.K. et al. FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. J. Clin. Invest. 121, 1361–1372 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Poulin, L.F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J. Exp. Med. 207, 1261–1271 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poulin, L.F. et al. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and non-lymphoid tissues. Blood 119, 6052–6062 (2012).

    CAS  PubMed  Google Scholar 

  • Messina, J.L. et al. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2, 765 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Martinet, L. et al. High endothelial venules (HEVs) in human melanoma lesions: major gateways for tumor-infiltrating lymphocytes. OncoImmunology 1, 829–839 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Harlin, H. et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 69, 3077–3085 (2009). This study defined the two broad phenotypes of human melanoma, largely based on the presence or absence of T cell markers and chemokine transcripts.

    CAS  PubMed  Google Scholar 

  • Mortarini, R. et al. Constitutive expression and costimulatory function of LIGHT/TNFSF14 on human melanoma cells and melanoma-derived microvesicles. Cancer Res. 65, 3428–3436 (2005).

    CAS  PubMed  Google Scholar 

  • Yu, P. et al. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat. Immunol. 5, 141–149 (2004). This work demonstrated that introduction of the TNF superfamily member LIGHT into the tumor microenvironment could be sufficient to cause tumor rejection in vivo.

    CAS  PubMed  Google Scholar 

  • de Visser, K.E., Korets, L.V. & Coussens, L.M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005).

    CAS  PubMed  Google Scholar 

  • Daniel, D. et al. Immune enhancement of skin carcinogenesis by CD4+ T cells. J. Exp. Med. 197, 1017–1028 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shields, J.D., Kourtis, I.C., Tomei, A.A., Roberts, J.M. & Swartz, M.A. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749–752 (2010).

    CAS  PubMed  Google Scholar 

  • Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra, R., Chen, A.T., Welsh, R.M. & Szomolanyi-Tsuda, E. NK cells and gammadelta T cells mediate resistance to polyomavirus-induced tumors. PLoS Pathog. 6, e1000924 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Smyth, M.J. et al. NKG2D function protects the host from tumor initiation. J. Exp. Med. 202, 583–588 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fine, J.H. et al. Chemotherapy-induced genotoxic stress promotes sensitivity to natural killer cell cytotoxicity by enabling missing-self recognition. Cancer Res. 70, 7102–7113 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, H., Hsiung, B., Pestal, K., Procyk, E. & Raulet, D.H. RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry. J. Exp. Med. 209, 2409–2422 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, R.B. et al. Densely granulated murine NK cells eradicate large solid tumors. Cancer Res. 72, 1964–1974 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delahaye, N.F. et al. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med. 17, 700–707 (2011).

    CAS  PubMed  Google Scholar 

  • Zhang, T., Lemoi, B.A. & Sentman, C.L. Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy. Blood 106, 1544–1551 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barber, A., Rynda, A. & Sentman, C.L. Chimeric NKG2D expressing T cells eliminate immunosuppression and activate immunity within the ovarian tumor microenvironment. J. Immunol. 183, 6939–6947 (2009).

    CAS  PubMed  Google Scholar 

  • Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738 (2002).

    CAS  PubMed  Google Scholar 

  • Jinushi, M., Hodi, F.S. & Dranoff, G. Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. Proc. Natl. Acad. Sci. USA 103, 9190–9195 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabelitz, D., Wesch, D., Pitters, E. & Zoller, M. Characterization of tumor reactivity of human V gamma 9V delta 2 gamma delta T cells in vitro and in SCID mice in vivo. J. Immunol. 173, 6767–6776 (2004).

    CAS  PubMed  Google Scholar 

  • Mattarollo, S.R., Kenna, T., Nieda, M. & Nicol, A.J. Chemotherapy and zoledronate sensitize solid tumour cells to Vgamma9Vdelta2 T cell cytotoxicity. Cancer Immunol. Immunother. 56, 1285–1297 (2007).

    CAS  PubMed  Google Scholar 

  • Marcu-Malina, V. et al. Redirecting alphabeta T cells against cancer cells by transfer of a broadly tumor-reactive gammadeltaT-cell receptor. Blood 118, 50–59 (2011).

    CAS  PubMed  Google Scholar 

  • Di Carlo, E. et al. Mechanisms of the antitumor activity of human Vgamma9Vdelta2 T cells in combination with zoledronic acid in a preclinical model of neuroblastoma. Mol. Ther. 21, 1034–1043 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, H., Tanaka, Y., Yagi, J., Minato, N. & Tanabe, K. Phase I/II study of adoptive transfer of gammadelta T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol. Immunother. 60, 1075–1084 (2011).

    CAS  PubMed  Google Scholar 

  • Peng, G. et al. Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 27, 334–348 (2007).

    CAS  PubMed  Google Scholar 

  • Moreno, M. et al. IFN-gamma-producing human invariant NKT cells promote tumor-associated antigen-specific cytotoxic T cell responses. J. Immunol. 181, 2446–2454 (2008).

    CAS  PubMed  Google Scholar 

  • Swann, J.B. et al. Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 113, 6382–6385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paget, C., Chow, M.T., Duret, H., Mattarollo, S.R. & Smyth, M.J. Role of gammadelta T cells in alpha-galactosylceramide-mediated immunity. J. Immunol. 188, 3928–3939 (2012).

    CAS  PubMed  Google Scholar 

  • Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat. Immunol. 1, 515–520 (2000).

    CAS  PubMed  Google Scholar 

  • Shimizu, K. et al. Vaccination with antigen-transfected, NKT cell ligand-loaded, human cells elicits robust in situ immune responses by dendritic cells. Cancer Res. 73, 62–73 (2013).

    CAS  PubMed  Google Scholar 

  • Richter, J. et al. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 121, 423–430 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, S., Ross, S.R., Acena, M., Rowley, D.A. & Schreiber, H. Stroma is critical for preventing or permitting immunological destruction of antigenic cancer cells. J. Exp. Med. 175, 139–146 (1992).

    CAS  PubMed  Google Scholar 

  • Kraman, M. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330, 827–830 (2010). This study revealed the critical role for FAP-expressing fibroblasts in tumor support and also in impeding antitumor immunity.

    CAS  PubMed  Google Scholar 

  • Wen, Y. et al. Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci. 101, 2325–2332 (2010).

    CAS  PubMed  Google Scholar 

  • Edosada, C.Y. et al. Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity. J. Biol. Chem. 281, 7437–7444 (2006).

    CAS  PubMed  Google Scholar 

  • Narra, K. et al. Phase II trial of single agent Val-boroPro (Talabostat) inhibiting fibroblast activation protein in patients with metastatic colorectal cancer. Cancer Biol. Ther. 6, 1691–1699 (2007).

    CAS  PubMed  Google Scholar 

  • Salmon, H. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–910 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buckanovich, R.J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 14, 28–36 (2008).

    CAS  PubMed  Google Scholar 

  • Mukai, S., Kagamu, H., Shu, S. & Plautz, G.E. Critical role of CD11a (LFA-1) in therapeutic efficacy of systemically transferred antitumor effector T cells. Cell. Immunol. 192, 122–132 (1999).

    CAS  PubMed  Google Scholar 

  • Strasly, M. et al. IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-talk. J. Immunol. 166, 3890–3899 (2001).

    CAS  PubMed  Google Scholar 

  • Johnson, L.A. et al. An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J. Exp. Med. 203, 2763–2777 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dengel, L.T. et al. Interferons induce CXCR3-cognate chemokine production by human metastatic melanoma. J. Immunother. 33, 965–974 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunz, M. et al. Strong expression of the lymphoattractant C–X-C chemokine Mig is associated with heavy infiltration of T cells in human malignant melanoma. J. Pathol. 189, 552–558 (1999).

    CAS  PubMed  Google Scholar 

  • Quatromoni, J.G. & Eruslanov, E. Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am. J. Transl. Res. 4, 376–389 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Rodriguez, P.C. et al. L-arginine consumption by macrophages modulates the expression of CD3zeta chain in T lymphocytes. J. Immunol. 171, 1232–1239 (2003).

    CAS  PubMed  Google Scholar 

  • Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 13, 828–835 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B. et al. Equilibrium between host and cancer caused by effector T cells killing tumor stroma. Cancer Res. 68, 1563–1571 (2008). This was the first study to demonstrate that immune system–mediated targeting of tumor stroma alone could control tumor growth in vivo.

    CAS  PubMed  Google Scholar 

  • Beatty, G.L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011). This work revealed a surprising mechanism of action of anti-CD40 monoclonal antibody in vivo , through macrophage-dependent remodeling of tumor stroma.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brose, M.S. et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 62, 6997–7000 (2002).

    CAS  PubMed  Google Scholar 

  • Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    CAS  PubMed  Google Scholar 

  • Flaherty, K.T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messina, J.L. et al. Activated stat-3 in melanoma. Cancer Control 15, 196–201 (2008).

    PubMed  Google Scholar 

  • Niu, G. et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21, 7001–7010 (2002).

    CAS  PubMed  Google Scholar 

  • Zhou, X.P. et al. Epigenetic PTEN silencing in malignant melanomas without PTEN mutation. Am. J. Pathol. 157, 1123–1128 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massi, D. et al. Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod. Pathol. 19, 246–254 (2006).

    CAS  PubMed  Google Scholar 

  • Larue, L. & Delmas, V. The WNT/Beta-catenin pathway in melanoma. Front. Biosci. 11, 733–742 (2006).

    CAS  PubMed  Google Scholar 

  • Delmas, V. et al. Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 21, 2923–2935 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burdelya, L. et al. Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects. J. Immunol. 174, 3925–3931 (2005).

    CAS  PubMed  Google Scholar 

  • Ugurel, S. et al. Impact of the CCR5 gene polymorphism on the survival of metastatic melanoma patients receiving immunotherapy. Cancer Immunol. Immunother. 57, 685–691 (2008).

    CAS  PubMed  Google Scholar 

  • Uccellini, L. et al. IRF5 gene polymorphisms in melanoma. J. Transl. Med. 10, 170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, H.J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gajewski, T.F., Louahed, J. & Brichard, V.G. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 16, 399–403 (2010). This paper summarized the early data suggesting, for the first time, that a T cell and chemokine-rich tumor microenvironment might define a predictive biomarker for response to immunotherapies, particularly vaccines.

    CAS  PubMed  Google Scholar 

  • Hamid, O. et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J. Transl. Med. 9, 204 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, R.R. et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother. 61, 1019–1031 (2012).

    CAS  PubMed  Google Scholar 

  • Sullivan, R.J. et al. A single center experience with high-dose IL-2 treatment for patients with advanced melanoma and pilot investigation of a novel gene expression signature as a predictor of response. J. Clin. Oncol. 27:15S, abstract 9003 (2009).

    Google Scholar 

  • Brahmer, J.R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Topalian, S.L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012). These first-in-man results of an anti–PD-1 monoclonal antibody revealed impressive clinical activity in patients with melanoma, lung cancer and kidney cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taube, J.M. et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl. Med. 4, 127ra137 (2012).

    Google Scholar 

  • Liu, X. et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 115, 3520–3530 (2010).

    CAS  PubMed  Google Scholar 

  • Rasku, M.A. et al. Transient T cell depletion causes regression of melanoma metastases. J. Transl. Med. 6, 12 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Telang, S. et al. Phase II trial of the regulatory T cell–depleting agent, denileukin diftitox, in patients with unresectable stage IV melanoma. BMC Cancer 11, 515 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Attia, P., Maker, A.V., Haworth, L.R., Rogers-Freezer, L. & Rosenberg, S.A. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J. Immunother. 28, 582–592 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rech, A.J. et al. CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci. Transl. Med. 4, 134ra162 (2012).

    Google Scholar 

  • Boussiotis, V.A. et al. Prevention of T cell anergy by signaling through the gamma c chain of the IL-2 receptor. Science 266, 1039–1042 (1994).

    CAS  PubMed  Google Scholar 

  • Sportes, C. et al. Phase I study of recombinant human interleukin-7 administration in subjects with refractory malignancy. Clin. Cancer Res. 16, 727–735 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim-Schulze, S., Kim, H.S., Fan, Q., Kim, D.W. & Kaufman, H.L. Local IL-21 promotes the therapeutic activity of effector T cells by decreasing regulatory T cells within the tumor microenvironment. Mol. Ther. 17, 380–388 (2009).

    CAS  PubMed  Google Scholar 

  • Petrella, T.M. et al. Interleukin-21 has activity in patients with metastatic melanoma: a phase II study. J. Clin. Oncol. 30, 3396–3401 (2012).

    CAS  PubMed  Google Scholar 

  • Tan, J.T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202, 907–912 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kline, J. et al. Homeostatic proliferation plus regulatory T-cell depletion promotes potent rejection of B16 melanoma. Clin. Cancer Res. 14, 3156–3167 (2008).

    CAS  PubMed  Google Scholar 

  • Woo, S.R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    CAS  PubMed  Google Scholar 

  • Curran, M.A., Montalvo, W., Yagita, H. & Allison, J.P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. USA 107, 4275–4280 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burnette, B., Fu, Y.X. & Weichselbaum, R.R. The confluence of radiotherapy and immunotherapy. Front. Oncol. 2, 143 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, P. et al. Targeting the primary tumor to generate CTL for the effective eradication of spontaneous metastases. J. Immunol. 179, 1960–1968 (2007).

    CAS  PubMed  Google Scholar 

  • Burnette, B.C. et al. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rakhra, K. et al. CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balachandran, V.P. et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat. Med. 17, 1094–1100 (2011). This important study demonstrated that the therapeutic effect of the kinase inhibitor imatinib in the setting of GIST worked, in part, through an immunologic mechanism.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frederick, D.T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225–1231 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007). This pivotal study demonstrated that host innate immune sensing through TLR signals had a critical role in the therapeutic effect of several chemotherapy drugs.

    CAS  PubMed  Google Scholar 

  • Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta–dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    CAS  PubMed  Google Scholar 

  • Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    CAS  PubMed  Google Scholar 

  • Ma, Y. et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729–741 (2013).

    CAS  PubMed  Google Scholar 

  • Liang, H. et al. Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing. J. Immunol. 190, 5874–5881 (2013).

    CAS  PubMed  Google Scholar 

  • Zeng, J. et al. Anti–PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol. Biol. Phys. 86, 343–349 (2013).

    CAS  PubMed  PubMed Central  Google Scholar