Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants - Nature Immunology
- ️Zon, Leonard I
- ️Sun Nov 09 2003
Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).
Morrison, S.J. & Weissman, I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).
Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).
Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).
Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).
Shivdasani, R.A., Mayer, E.L. & Orkin, S.H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432–434 (1995).
Yamada, Y. et al. The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc. Natl. Acad. Sci. USA 95, 3890–3895 (1998).
Warren, A.J. et al. The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78, 45–57 (1994).
Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).
Mucenski, M.L. et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65, 677–689 (1991).
Ivanova, N.B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).
Amatruda, J.F. & Zon, L.I. Dissecting hematopoiesis and disease using the zebrafish. Dev. Biol. 216, 1–15 (1999).
Ransom, D.G. et al. Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123, 311–319 (1996).
Weinstein, B.M. et al. Hematopoietic mutations in the zebrafish. Development 123, 303–309 (1996).
Liao, E.C. et al. SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. Genes Dev. 12, 621–626 (1998).
Parker, L. & Stainier, D.Y. Cell-autonomous and non-autonomous requirements for the zebrafish gene cloche in hematopoiesis. Development 126, 2643–2651 (1999).
Liao, E.C. et al. Non-cell autonomous requirement for the bloodless gene in primitive hematopoiesis of zebrafish. Development 129, 649–659 (2002).
Trede, N.S., Zapata, A. & Zon, L.I. Fishing for lymphoid genes. Trends Immunol. 22, 302–307 (2001).
Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274–288 (2001).
Traver, D. & Zon, L.I. Walking the walk: migration and other common themes in blood and vascular development. Cell 108, 731–734 (2002).
Thompson, M.A. et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev. Biol. 197, 248–269 (1998).
Burns, C.E. et al. Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Exp. Hematol. 30, 1381–1389 (2002).
Kalev-Zylinska, M.L. et al. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development 129, 2015–2030 (2002).
Zapata, A. Ultrastructural study of the teleost fish kidney. Dev. Comp. Immunol. 3, 55–65 (1979).
Jagadeeswaran, P., Sheehan, J.P., Craig, F.E. & Troyer, D. Identification and characterization of zebrafish thrombocytes. Br. J. Haematol. 107, 731–738 (1999).
Shapiro, H.M. Parameters and probes. In Practical Flow Cytometry 271–410 (Wiley-Liss, New York, 2002).
Zon, L.I. et al. Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood 81, 3234–3241 (1993).
Langenau, D.M. et al. Myc-induced T-cell leukemia in transgenic zebrafish. Science 299, 887–890 (2003).
Long, Q. et al. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124, 4105–4111 (1997).
Shafizadeh, E. et al. Characterization of zebrafish merlot/chablis as non-mammalian vertebrate models for severe congenital anemia due to protein 4.1 deficiency. Development 129, 4359–4370 (2002).
Paw, B.H. et al. Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Nat. Genet. 34, 59–64 (2003).
Liao, E.C. et al. Hereditary spherocytosis in zebrafish riesling illustrates evolution of erythroid β-spectrin structure, and function in red cell morphogenesis and membrane stability. Development 127, 5123–5132 (2000).
Tanner, M.J. Band 3 anion exchanger and its involvement in erythrocyte and kidney disorders. Curr. Opin. Hematol. 9, 133–139 (2002).
Trede, N.S. & Zon, L.I. Development of T-cells during fish embryogenesis. Dev. Comp. Immunol. 22, 253–263 (1998).
Willett, C.E., Zapata, A.G., Hopkins, N. & Steiner, L.A. Expression of zebrafish rag genes during early development identifies the thymus. Dev. Biol. 182, 331–341 (1997).
Lyons, S.E. et al. A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes. Proc. Natl. Acad. Sci. USA 99, 5454–5459 (2002).
Butcher, E.C. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67, 1033–1036 (1991).
Al-Adhami, M.A. & Kunz, Y.W. Ontogenesis of haematopoietic sites in Brachydanio rerio. Dev. Growth Differ. 19, 171–179 (1977).
Willett, C.E., Cortes, A., Zuasti, A. & Zapata, A.G. Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev. Dyn. 214, 323–336 (1999).
Bennett, C.M. et al. Myelopoiesis in the zebrafish, Danio rerio. Blood 98, 643–651 (2001).
Lieschke, G.J., Oates, A.C., Crowhurst, M.O., Ward, A.C. & Layton, J.E. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood 98, 3087–3096 (2001).
Herbomel, P., Thisse, B. & Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126, 3735–3745 (1999).
Bowden, L.A. et al. Generation and characterisation of monoclonal antibodies against rainbow trout, Oncorhynchus mykiss, leucocytes. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 117, 291–298 (1997).
Miller, N. et al. Functional and molecular characterization of teleost leukocytes. Immunol. Rev. 166, 187–197 (1998).
Secombes, C.J., van Groningen, J.J. & Egberts, E. Separation of lymphocyte subpopulations in carp Cyprinus carpio L. by monoclonal antibodies: immunohistochemical studies. Immunology 48, 165–175 (1983).
Rombout, J.H., Taverne-Thiele, A.J. & Villena, M.I. The gut-associated lymphoid tissue (GALT) of carp (Cyprinus carpio L.): an immunocytochemical analysis. Dev. Comp. Immunol. 17, 55–66 (1993).
Slierendrecht, W.J., Lorenzen, N., Glamann, J., Koch, C. & Rombout, J.H. Immunocytochemical analysis of a monoclonal antibody specific for rainbow trout (Oncorhynchus mykiss) granulocytes and thrombocytes. Vet. Immunol. Immunopathol. 46, 349–360 (1995).
Kollner, B., Blohm, U., Kotterba, G. & Fischer, U. A monoclonal antibody recognising a surface marker on rainbow trout (Oncorhynchus mykiss) monocytes. Fish Shellfish Immunol. 11, 127–142 (2001).
Lux, S.E. and Palek, J. Disorders of the red cell membrane. In Blood: Principles and Practice of Hematology (eds. Handin, R.I., Lux, S.E. & Stossel, T.P.) 1701–1818 (J.P. Lippincott, Philadelphia, 1995).
Hoover, K.B. & Bryant, P.J. The genetics of the protein 4.1 family: organizers of the membrane and cytoskeleton. Curr. Opin. Cell Biol. 12, 229–234 (2000).
Danilova, N. & Steiner, L.A. B cells develop in the zebrafish pancreas. Proc. Natl. Acad. Sci. USA 99, 13711–13716 (2002).
Pevny, L. et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349, 257–260 (1991).
Weiss, M.J., Keller, G. & Orkin, S.H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 8, 1184–1197 (1994).
Fujiwara, Y., Browne, C.P., Cunniff, K., Goff, S.C. & Orkin, S.H. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl. Acad. Sci. USA 93, 12355–12358 (1996).
Fleischman, R.A., Custer, R.P. & Mintz, B. Totipotent hematopoietic stem cells: normal self-renewal and differentiation after transplantation between mouse fetuses. Cell 30, 351–359 (1982).
Wagers, A.J., Sherwood, R.I., Christensen, J.L. & Weissman, I.L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002).
Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Brachydanio rerio) (University of Oregon Press, Eugene, 1994).