nature.com

Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants - Nature Immunology

  • ️Zon, Leonard I
  • ️Sun Nov 09 2003
  • Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Morrison, S.J. & Weissman, I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Shivdasani, R.A., Mayer, E.L. & Orkin, S.H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432–434 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Yamada, Y. et al. The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc. Natl. Acad. Sci. USA 95, 3890–3895 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren, A.J. et al. The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78, 45–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Mucenski, M.L. et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65, 677–689 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Ivanova, N.B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Amatruda, J.F. & Zon, L.I. Dissecting hematopoiesis and disease using the zebrafish. Dev. Biol. 216, 1–15 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Ransom, D.G. et al. Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123, 311–319 (1996).

    CAS  PubMed  Google Scholar 

  • Weinstein, B.M. et al. Hematopoietic mutations in the zebrafish. Development 123, 303–309 (1996).

    CAS  PubMed  Google Scholar 

  • Liao, E.C. et al. SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. Genes Dev. 12, 621–626 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker, L. & Stainier, D.Y. Cell-autonomous and non-autonomous requirements for the zebrafish gene cloche in hematopoiesis. Development 126, 2643–2651 (1999).

    CAS  PubMed  Google Scholar 

  • Liao, E.C. et al. Non-cell autonomous requirement for the bloodless gene in primitive hematopoiesis of zebrafish. Development 129, 649–659 (2002).

    CAS  PubMed  Google Scholar 

  • Trede, N.S., Zapata, A. & Zon, L.I. Fishing for lymphoid genes. Trends Immunol. 22, 302–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Traver, D. & Zon, L.I. Walking the walk: migration and other common themes in blood and vascular development. Cell 108, 731–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Thompson, M.A. et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev. Biol. 197, 248–269 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Burns, C.E. et al. Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Exp. Hematol. 30, 1381–1389 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kalev-Zylinska, M.L. et al. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development 129, 2015–2030 (2002).

    CAS  PubMed  Google Scholar 

  • Zapata, A. Ultrastructural study of the teleost fish kidney. Dev. Comp. Immunol. 3, 55–65 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeswaran, P., Sheehan, J.P., Craig, F.E. & Troyer, D. Identification and characterization of zebrafish thrombocytes. Br. J. Haematol. 107, 731–738 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, H.M. Parameters and probes. In Practical Flow Cytometry 271–410 (Wiley-Liss, New York, 2002).

    Google Scholar 

  • Zon, L.I. et al. Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood 81, 3234–3241 (1993).

    CAS  PubMed  Google Scholar 

  • Langenau, D.M. et al. Myc-induced T-cell leukemia in transgenic zebrafish. Science 299, 887–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Long, Q. et al. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124, 4105–4111 (1997).

    CAS  PubMed  Google Scholar 

  • Shafizadeh, E. et al. Characterization of zebrafish merlot/chablis as non-mammalian vertebrate models for severe congenital anemia due to protein 4.1 deficiency. Development 129, 4359–4370 (2002).

    CAS  PubMed  Google Scholar 

  • Paw, B.H. et al. Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Nat. Genet. 34, 59–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Liao, E.C. et al. Hereditary spherocytosis in zebrafish riesling illustrates evolution of erythroid β-spectrin structure, and function in red cell morphogenesis and membrane stability. Development 127, 5123–5132 (2000).

    CAS  PubMed  Google Scholar 

  • Tanner, M.J. Band 3 anion exchanger and its involvement in erythrocyte and kidney disorders. Curr. Opin. Hematol. 9, 133–139 (2002).

    Article  PubMed  Google Scholar 

  • Trede, N.S. & Zon, L.I. Development of T-cells during fish embryogenesis. Dev. Comp. Immunol. 22, 253–263 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Willett, C.E., Zapata, A.G., Hopkins, N. & Steiner, L.A. Expression of zebrafish rag genes during early development identifies the thymus. Dev. Biol. 182, 331–341 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Lyons, S.E. et al. A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes. Proc. Natl. Acad. Sci. USA 99, 5454–5459 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butcher, E.C. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67, 1033–1036 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Al-Adhami, M.A. & Kunz, Y.W. Ontogenesis of haematopoietic sites in Brachydanio rerio. Dev. Growth Differ. 19, 171–179 (1977).

    Article  Google Scholar 

  • Willett, C.E., Cortes, A., Zuasti, A. & Zapata, A.G. Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev. Dyn. 214, 323–336 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Bennett, C.M. et al. Myelopoiesis in the zebrafish, Danio rerio. Blood 98, 643–651 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Lieschke, G.J., Oates, A.C., Crowhurst, M.O., Ward, A.C. & Layton, J.E. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood 98, 3087–3096 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Herbomel, P., Thisse, B. & Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126, 3735–3745 (1999).

    CAS  PubMed  Google Scholar 

  • Bowden, L.A. et al. Generation and characterisation of monoclonal antibodies against rainbow trout, Oncorhynchus mykiss, leucocytes. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 117, 291–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Miller, N. et al. Functional and molecular characterization of teleost leukocytes. Immunol. Rev. 166, 187–197 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Secombes, C.J., van Groningen, J.J. & Egberts, E. Separation of lymphocyte subpopulations in carp Cyprinus carpio L. by monoclonal antibodies: immunohistochemical studies. Immunology 48, 165–175 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rombout, J.H., Taverne-Thiele, A.J. & Villena, M.I. The gut-associated lymphoid tissue (GALT) of carp (Cyprinus carpio L.): an immunocytochemical analysis. Dev. Comp. Immunol. 17, 55–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Slierendrecht, W.J., Lorenzen, N., Glamann, J., Koch, C. & Rombout, J.H. Immunocytochemical analysis of a monoclonal antibody specific for rainbow trout (Oncorhynchus mykiss) granulocytes and thrombocytes. Vet. Immunol. Immunopathol. 46, 349–360 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Kollner, B., Blohm, U., Kotterba, G. & Fischer, U. A monoclonal antibody recognising a surface marker on rainbow trout (Oncorhynchus mykiss) monocytes. Fish Shellfish Immunol. 11, 127–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Lux, S.E. and Palek, J. Disorders of the red cell membrane. In Blood: Principles and Practice of Hematology (eds. Handin, R.I., Lux, S.E. & Stossel, T.P.) 1701–1818 (J.P. Lippincott, Philadelphia, 1995).

    Google Scholar 

  • Hoover, K.B. & Bryant, P.J. The genetics of the protein 4.1 family: organizers of the membrane and cytoskeleton. Curr. Opin. Cell Biol. 12, 229–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Danilova, N. & Steiner, L.A. B cells develop in the zebrafish pancreas. Proc. Natl. Acad. Sci. USA 99, 13711–13716 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pevny, L. et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349, 257–260 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Weiss, M.J., Keller, G. & Orkin, S.H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 8, 1184–1197 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara, Y., Browne, C.P., Cunniff, K., Goff, S.C. & Orkin, S.H. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl. Acad. Sci. USA 93, 12355–12358 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischman, R.A., Custer, R.P. & Mintz, B. Totipotent hematopoietic stem cells: normal self-renewal and differentiation after transplantation between mouse fetuses. Cell 30, 351–359 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Wagers, A.J., Sherwood, R.I., Christensen, J.L. & Weissman, I.L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Brachydanio rerio) (University of Oregon Press, Eugene, 1994).

    Google Scholar