nature.com

Mast cells in the development of adaptive immune responses - Nature Immunology

  • ️Tsai, Mindy
  • ️Thu Jan 20 2005
  • Kitamura, Y. Heterogeneity of mast cells and phenotypic change between subpopulations. Annu. Rev. Immunol. 7, 59–76 (1989).

    CAS  PubMed  Google Scholar 

  • Metcalfe, D.D., Baram, D. & Mekori, Y.A. Mast cells. Physiol. Rev. 77, 1033–1079 (1997).

    CAS  PubMed  Google Scholar 

  • Kawakami, T. & Galli, S.J. Regulation of mast-cell and basophil function and survival by IgE. Nat. Rev. Immunol. 2, 773–786 (2002).

    CAS  PubMed  Google Scholar 

  • Galli, S.J., Zsebo, K.M. & Geissler, E.N. The kit ligand, stem cell factor. Adv. Immunol. 55, 1–96 (1994).

    CAS  PubMed  Google Scholar 

  • Gonzalez-Espinosa, C. et al. Preferential signaling and induction of allergy-promoting lymphokines upon weak stimulation of the high affinity IgE receptor on mast cells. J. Exp. Med. 197, 1453–1465 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galli, S. et al. Mast cells as “tunable” effector and immunoregulatory cells: Recent advances. Annu. Rev. Immunol. 23, 749–786 (2005).

    CAS  PubMed  Google Scholar 

  • Kinet, J.P. The high-affinity IgE receptor (FcεRI): from physiology to pathology. Annu. Rev. Immunol. 17, 931–972 (1999).

    CAS  PubMed  Google Scholar 

  • Blank, U. & Rivera, J. The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol. 25, 266–273 (2004).

    CAS  PubMed  Google Scholar 

  • Nakano, T. et al. Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J. Exp. Med. 162, 1025–1043 (1985).

    CAS  PubMed  Google Scholar 

  • Tsai, M., Tam, S.Y., Wedemeyer, J. & Galli, S.J. Mast cells derived from embryonic stem cells: a model system for studying the effects of genetic manipulations on mast cell development, phenotype, and function in vitro and in vivo. Int. J. Hematol. 75, 345–349 (2002).

    CAS  PubMed  Google Scholar 

  • Berrozpe, G. et al. The W(sh), W(57), and Ph Kit expression mutations define tissue-specific control elements located between -23 and -154 kb upstream of Kit. Blood 94, 2658–2666 (1999).

    CAS  PubMed  Google Scholar 

  • Hayashi, S., Kunisada, T., Ogawa, M., Yamaguchi, K. & Nishikawa, S. Exon skipping by mutation of an authentic splice site of c-kit gene in W/W mouse. Nucleic Acids Res. 19, 1267–1271 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nocka, K. et al. Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J. 9, 1805–1813 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reith, A.D. et al. W mutant mice with mild or severe developmental defects contain distinct point mutations in the kinase domain of the c-kit receptor. Genes Dev. 4, 390–400 (1990).

    CAS  PubMed  Google Scholar 

  • Yamazaki, M. et al. C-kit gene is expressed by skin mast cells in embryos but not in puppies of Wsh/Wsh mice: age-dependent abolishment of c-kit gene expression. Blood 83, 3509–3516 (1994).

    CAS  PubMed  Google Scholar 

  • Grimbaldeston, M.A., Chen, C.-C., Tam, S.-Y., Tsai, M. & Galli, S.J. Mast cell deficient W-sash c-kit mutant KitW-sh//KitW-sh mice as a model for investigating mast cell biology in vivo. FASEB J. (in the press).

  • Mallen-St Clair, J., Pham, C.T., Villalta, S.A., Caughey, G.H. & Wolters, P.J. Mast cell dipeptidyl peptidase I mediates survival from sepsis. J. Clin. Invest. 113, 628–634 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens, J. & Loutit, J.F. Mast cells in spotted mutant mice (W Ph mi). Proc. R. Soc. Lond. B 215, 405–409 (1982).

    CAS  PubMed  Google Scholar 

  • Duttlinger, R. et al. W-sash affects positive and negative elements controlling c-kit expression: ectopic c-kit expression at sites of kit-ligand expression affects melanogenesis. Development 118, 705–717 (1993).

    CAS  PubMed  Google Scholar 

  • Maurer, M. et al. Mast cells promote homeostasis by limiting endothelin-1 induced toxicity. Nature 432, 512–516 (2004).

    CAS  PubMed  Google Scholar 

  • Lantz, C.S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 90–93 (1998).

    CAS  PubMed  Google Scholar 

  • King, C.L. et al. Mice with a targeted deletion of the IgE gene have increased worm burdens and reduced granulomatous inflammation following primary infection with Schistosoma mansoni. J. Immunol. 158, 294–300 (1997).

    CAS  PubMed  Google Scholar 

  • Strait, R.T., Morris, S.C., Yang, M., Qu, X.W. & Finkelman, F.D. Pathways of anaphylaxis in the mouse. J. Allergy Clin. Immunol. 109, 658–668 (2002).

    CAS  PubMed  Google Scholar 

  • Williams, C.M. & Galli, S.J. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J. Exp. Med. 192, 455–462 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, T. et al. An essential role of mast cells in the development of airway hyperresponsiveness in a murine asthma model. J. Immunol. 164, 3855–3861 (2000).

    CAS  PubMed  Google Scholar 

  • Woolhiser, M.R., Brockow, K. & Metcalfe, D.D. Activation of human mast cells by aggregated IgG through FcgammaRI: additive effects of C3a. Clin. Immunol. 110, 172–180 (2004).

    CAS  PubMed  Google Scholar 

  • Marshall, J.S. Mast-cell responses to pathogens. Nat. Rev. Immunol. 4, 787–799 (2004).

    CAS  PubMed  Google Scholar 

  • Galli, S.J., Tsai, M. & Chatterjea, D. in The Innate Immune Response to Infection (eds. Kaufman, S.H.E., Medzhitov, R. & Gordon, S.) 111–132 (ASM Press, Berlin, 2004).

    Google Scholar 

  • Di Nardo, A., Vitiello, A. & Gallo, R.L. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J. Immunol. 170, 2274–2278 (2003).

    CAS  PubMed  Google Scholar 

  • Malaviya, R. et al. Mast cell phagocytosis of FimH-expressing enterobacteria. J. Immunol. 152, 1907–1914 (1994).

    CAS  PubMed  Google Scholar 

  • Malaviya, R., Twesten, N.J., Ross, E.A., Abraham, S.N. & Pfeifer, J.D. Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. J. Immunol. 156, 1490–1496 (1996).

    CAS  PubMed  Google Scholar 

  • Mekori, Y.A. & Metcalfe, D.D. Mast cell-T cell interactions. J. Allergy Clin. Immunol. 104, 517–523 (1999).

    CAS  PubMed  Google Scholar 

  • Henz, B.M., Maurer, M., Lippert, U., Worm, M. & Babina, M. Mast cells as initiators of immunity and host defense. Exp. Dermatol. 10, 1–10 (2001).

    CAS  PubMed  Google Scholar 

  • Frandji, P. et al. Exogenous and endogenous antigens are differentially presented by mast cells to CD4+ T lymphocytes. Eur. J. Immunol. 26, 2517–2528 (1996).

    CAS  PubMed  Google Scholar 

  • Sayama, K. et al. Transcriptional response of human mast cells stimulated via the FcεRI and identification of mast cells as a source of IL-11. BMC Immunol. 3, 5 (2002).

    PubMed  PubMed Central  Google Scholar 

  • Kashiwakura, J., Yokoi, H., Saito, H. & Okayama, Y. T cell proliferation by direct cross-talk between OX40 ligand on human mast cells and OX40 on human T cells: comparison of gene expression profiles between human tonsillar and lung-cultured mast cells. J. Immunol. 173, 5247–5257 (2004).

    CAS  PubMed  Google Scholar 

  • Skokos, D. et al. Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J. Immunol. 166, 868–876 (2001).

    CAS  PubMed  Google Scholar 

  • Wang, H.W., Tedla, N., Lloyd, A.R., Wakefield, D. & McNeil, P.H. Mast cell activation and migration to lymph nodes during induction of an immune response in mice. J. Clin. Invest. 102, 1617–1626 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinman, R.M. & Inaba, K. Myeloid dendritic cells. J. Leukoc. Biol. 66, 205–208 (1999).

    CAS  PubMed  Google Scholar 

  • Cumberbatch, M., Dearman, R.J., Griffiths, C.E. & Kimber, I. Langerhans cell migration. Clin. Exp. Dermatol. 25, 413–418 (2000).

    CAS  PubMed  Google Scholar 

  • Kaser, A. et al. A role for IL-16 in the cross-talk between dendritic cells and T cells. J. Immunol. 163, 3232–3238 (1999).

    CAS  PubMed  Google Scholar 

  • Cumberbatch, M., Dearman, R.J., Antonopoulos, C., Groves, R.W. & Kimber, I. Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-α- and IL-1β-dependent mechanism. Immunology 102, 323–330 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sozzani, S. et al. Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines. J. Immunol. 155, 3292–3295 (1995).

    CAS  PubMed  Google Scholar 

  • Yamazaki, S., Yokozeki, H., Satoh, T., Katayama, I. & Nishioka, K. TNF-alpha, RANTES, and MCP-1 are major chemoattractants of murine Langerhans cells to the regional lymph nodes. Exp. Dermatol. 7, 35–41 (1998).

    CAS  PubMed  Google Scholar 

  • Carramolino, L. et al. Down-regulation of the beta-chemokine receptor CCR6 in dendritic cells mediated by TNF-α and IL-4. J. Leukoc. Biol. 66, 837–844 (1999).

    CAS  PubMed  Google Scholar 

  • Robbiani, D.F. et al. The leukotriene C4 transporter MRP1 regulates CCL19 (MIP-3β, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 103, 757–768 (2000).

    CAS  PubMed  Google Scholar 

  • Kabashima, K. et al. Prostaglandin E2–EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells. Nat. Med. 9, 744–749 (2003).

    CAS  PubMed  Google Scholar 

  • Ioffreda, M.D., Whitaker, D. & Murphy, G.F. Mast cell degranulation upregulates α6 integrins on epidermal Langerhans cells. J. Invest. Dermatol. 101, 150–154 (1993).

    CAS  PubMed  Google Scholar 

  • Skokos, D. et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J. Immunol. 170, 3037–3045 (2003).

    CAS  PubMed  Google Scholar 

  • Caron, G. et al. Histamine induces CD86 expression and chemokine production by human immature dendritic cells. J. Immunol. 166, 6000–6006 (2001).

    CAS  PubMed  Google Scholar 

  • Mazzoni, A., Young, H.A., Spitzer, J.H., Visintin, A. & Segal, D.M. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J. Clin. Invest. 108, 1865–1873 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caron, G. et al. Histamine polarizes human dendritic cells into Th2 cell-promoting effector dendritic cells. J. Immunol. 167, 3682–3686 (2001).

    CAS  PubMed  Google Scholar 

  • Kalinski, P., Hilkens, C.M., Snijders, A., Snijdewint, F.G. & Kapsenberg, M.L. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J. Immunol. 159, 28–35 (1997).

    CAS  PubMed  Google Scholar 

  • Faveeuw, C. et al. Prostaglandin D2 inhibits the production of interleukin-12 in murine dendritic cells through multiple signaling pathways. Eur. J. Immunol. 33, 889–898 (2003).

    CAS  PubMed  Google Scholar 

  • Gosset, P. et al. Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequence on the polarization of naive Th cells. J. Immunol. 170, 4943–4952 (2003).

    CAS  PubMed  Google Scholar 

  • Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

    CAS  PubMed  Google Scholar 

  • Ikeda, K. et al. Mast cells produce interleukin-25 upon FcεRI-mediated activation. Blood 101, 3594–3596 (2003).

    CAS  PubMed  Google Scholar 

  • Fort, M.M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    CAS  PubMed  Google Scholar 

  • Bryce, P.J. et al. Immune sensitization in the skin is enhanced by antigen-independent effects of IgE. Immunity 20, 381–392 (2004).

    CAS  PubMed  Google Scholar 

  • Jawdat, D.M., Albert, E.J., Rowden, G., Haidl, I.D. & Marshall, J.S. IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J. Immunol. 173, 5275–5282 (2004).

    CAS  PubMed  Google Scholar 

  • Mekori, Y.A. The mastocyte: the “other” inflammatory cell in immunopathogenesis. J. Allergy Clin. Immunol. 114, 52–57 (2004).

    CAS  PubMed  Google Scholar 

  • Nakajima, T. et al. Marked increase in CC chemokine gene expression in both human and mouse mast cell transcriptomes following Fcεreceptor I cross-linking: an interspecies comparison. Blood 100, 3861–3868 (2002).

    CAS  PubMed  Google Scholar 

  • Lin, T.J. et al. Selective early production of CCL20, or macrophage inflammatory protein 3α, by human mast cells in response to Pseudomonas aeruginosa. Infect. Immun. 71, 365–373 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mori, Y. et al. Tyk2 is essential for IFN-α-induced gene expression in mast cells. Int. Arch. Allergy Immunol. 134, 25–29 (2004).

    CAS  PubMed  Google Scholar 

  • Ott, V.L., Cambier, J.C., Kappler, J., Marrack, P. & Swanson, B.J. Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4 . Nat. Immunol. 4, 974–981 (2003).

    CAS  PubMed  Google Scholar 

  • Jutel, M. et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 413, 420–425 (2001).

    CAS  PubMed  Google Scholar 

  • McLachlan, J.B. et al. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat. Immunol. 4, 1199–1205 (2003).

    CAS  PubMed  Google Scholar 

  • Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    CAS  PubMed  Google Scholar 

  • Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 1, 423–431 (1994).

    CAS  PubMed  Google Scholar 

  • Gauchat, J.F. et al. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365, 340–343 (1993).

    CAS  PubMed  Google Scholar 

  • Pawankar, R., Okuda, M., Yssel, H., Okumura, K. & Ra, C. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the FcεRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J. Clin. Invest. 99, 1492–1499 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagihara, Y. et al. Cultured basophils but not cultured mast cells induce human IgE synthesis in B cells after immunologic stimulation. Clin. Exp. Immunol. 111, 136–143 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryzhov, S. et al. Adenosine-activated mast cells induce IgE synthesis by B lymphocytes: an A2B-mediated process involving Th2 cytokines IL-4 and IL-13 with implications for asthma. J. Immunol. 172, 7726–7733 (2004).

    CAS  PubMed  Google Scholar 

  • Yoshikawa, T., Imada, T., Nakakubo, H., Nakamura, N. & Naito, K. Rat mast cell protease-I enhances immunoglobulin E production by mouse B cells stimulated with interleukin-4. Immunology 104, 333–340 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul, W.E., Seder, R.A. & Plaut, M. Lymphokine and cytokine production by FcεRI+ cells. Adv. Immunol. 53, 1–29 (1993).

    CAS  PubMed  Google Scholar 

  • Stassen, M. et al. IL-9 and IL-13 production by activated mast cells is strongly enhanced in the presence of lipopolysaccharide: NF-κB is decisively involved in the expression of IL-9. J. Immunol. 166, 4391–4398 (2001).

    CAS  PubMed  Google Scholar 

  • Villa, I. et al. Capacity of mouse mast cells to prime T cells and to induce specific antibody responses in vivo. Immunology 102, 165–172 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, C.M.M. & Galli, S.J. The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J. Allergy Clin. Immunol. 105, 847–859 (2000).

    CAS  PubMed  Google Scholar 

  • Martin, T.R. et al. Mast cells contribute to the changes in heart rate, but not hypotension or death, associated with active anaphylaxis in mice. J. Immunol. 151, 367–376 (1993).

    CAS  PubMed  Google Scholar 

  • Alenius, H. et al. Mast cells regulate IFN-γ expression in the skin and circulating IgE levels in allergen-induced skin inflammation. J. Allergy Clin. Immunol. 109, 106–113 (2002).

    CAS  PubMed  Google Scholar 

  • Ha, T.Y., Reed, N.D. & Crowle, P.K. Immune response potential of mast cell-deficient W/Wv mice. Int. Arch. Allergy Appl. Immunol. 80, 85–94 (1986).

    CAS  PubMed  Google Scholar 

  • Martin, T.R., Galli, S.J., Katona, I.M. & Drazen, J.M. Role of mast cells in anaphylaxis. Evidence for the importance of mast cells in the cardiopulmonary alterations and death induced by anti-IgE in mice. J. Clin. Invest. 83, 1375–1383 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kung, T.T. et al. Mast cells modulate allergic pulmonary eosinophilia in mice. Am. J. Respir. Cell Mol. Biol. 12, 404–409 (1995).

    CAS  PubMed  Google Scholar 

  • Takeda, K. et al. Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J. Exp. Med. 186, 449–454 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Askenase, P.W. et al. Defective elicitation of delayed-type hypersensitivity in W/Wv and Sl/Sld mast cell-deficient mice. J. Immunol. 131, 2687–2694 (1983).

    CAS  PubMed  Google Scholar 

  • Biedermann, T. et al. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J. Exp. Med. 192, 1441–1452 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, W.R. & Schrader, J.W. Delayed hypersensitivity in mast-cell-deficient mice. J. Immunol. 130, 2565–2567 (1983).

    CAS  PubMed  Google Scholar 

  • Galli, S.J. & Hammel, I. Unequivocal delayed hypersensitivity in mast cell-deficient and beige mice. Science 226, 710–713 (1984).

    CAS  PubMed  Google Scholar 

  • Wershil, B.K., Wang, Z.S., Gordon, J.R. & Galli, S.J. Recruitment of neutrophils during IgE-dependent cutaneous late phase reactions in the mouse is mast cell-dependent. Partial inhibition of the reaction with antiserum against tumor necrosis factor-alpha. J. Clin. Invest. 87, 446–453 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta, G.T. et al. Mast cell-dependent tumor necrosis factor α production participates in allergic gastric inflammation in mice. Gastroenterology 113, 1560–1569 (1997).

    CAS  PubMed  Google Scholar 

  • Secor, V.H., Secor, W.E., Gutekunst, C.A. & Brown, M.A. Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J. Exp. Med. 191, 813–822 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robbie-Ryan, M., Tanzola, M.B., Secor, V.H. & Brown, M.A. Cutting edge: both activating and inhibitory Fc receptors expressed on mast cells regulate experimental allergic encephalomyelitis disease severity. J. Immunol. 170, 1630–1634 (2003).

    CAS  PubMed  Google Scholar 

  • Tanzola, M.B., Robbie-Ryan, M., Gutekunst, C.A. & Brown, M.A. Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course. J. Immunol. 171, 4385–4391 (2003).

    CAS  PubMed  Google Scholar 

  • Pedotti, R. et al. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat. Immunol. 2, 216–222 (2001).

    CAS  PubMed  Google Scholar 

  • Pedotti, R., De Voss, J.J., Steinman, L. & Galli, S.J. Involvement of both 'allergic' and 'autoimmune' mechanisms in EAE, MS and other autoimmune diseases. Trends Immunol. 24, 479–484 (2003).

    CAS  PubMed  Google Scholar 

  • Lee, D.M. et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297, 1689–1692 (2002).

    CAS  PubMed  Google Scholar 

  • Chen, R. et al. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J. Clin. Invest. 108, 1151–1158 (2001).

    CAS  PubMed  PubMed Central  Google Scholar