nature.com

Thymic microenvironments for T cell differentiation and selection - Nature Immunology

  • ️Robey, Ellen A
  • ️Mon Mar 20 2006
  • Gray, D.H. et al. Controlling the thymic microenvironment. Curr. Opin. Immunol. 17, 137–143 (2005).

    CAS  PubMed  Google Scholar 

  • Blackburn, C.C. & Manley, N.R. Developing a new paradigm for thymus organogenesis. Nat. Rev. Immunol. 4, 278–289 (2004).

    CAS  PubMed  Google Scholar 

  • Lind, E., Prockop, S., Porritt, H. & Petrie, H. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med. 194, 127–134 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foss, D.L., Donskoy, E. & Goldschneider, I. The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J. Exp. Med. 193, 365–374 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prockop, S.E. & Petrie, H.T. Regulation of thymus size by competition for stromal niches among early T cell progenitors. J. Immunol. 173, 1604–1611 (2004).

    CAS  PubMed  Google Scholar 

  • Rossi, F.M. et al. Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nat. Immunol. 6, 626–634 (2005).

    CAS  PubMed  Google Scholar 

  • Campbell, D.J., Kim, C.H. & Butcher, E.C. Chemokines in the systemic organization of immunity. Immunol. Rev. 195, 58–71 (2003).

    CAS  PubMed  Google Scholar 

  • Petrie, H.T. Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nat. Rev. Immunol. 3, 859–866 (2003).

    CAS  PubMed  Google Scholar 

  • Bleul, C.C. & Boehm, T. Chemokines define distinct microenvironments in the developing thymus. Eur. J. Immunol. 30, 3371–3379 (2000).

    CAS  PubMed  Google Scholar 

  • Liu, C. et al. The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood 105, 31–39 (2005).

    CAS  PubMed  Google Scholar 

  • Zubkova, I., Mostowski, H. & Zaitseva, M. Up-regulation of IL-7, stromal-derived factor-1α, thymus-expressed chemokine, and secondary lymphoid tissue chemokine gene expression in the stromal cells in response to thymocyte depletion: implication for thymus reconstitution. J. Immunol. 175, 2321–2330 (2005).

    CAS  PubMed  Google Scholar 

  • Cyster, J.G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    CAS  PubMed  Google Scholar 

  • Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    CAS  PubMed  Google Scholar 

  • Allende, M.L., Dreier, J.L., Mandala, S. & Proia, R.L. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J. Biol. Chem. 279, 15396–15401 (2004).

    CAS  PubMed  Google Scholar 

  • Wei, S.H. et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat. Immunol. 6, 1228–1235 (2005).

    CAS  PubMed  Google Scholar 

  • Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    CAS  PubMed  Google Scholar 

  • Schwab, S.R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739 (2005).

    CAS  PubMed  Google Scholar 

  • Feng, C. et al. A potential role for CD69 in thymocyte emigration. Int. Immunol. 14, 535–544 (2002).

    CAS  PubMed  Google Scholar 

  • Cotta-de-Almeida, V. et al. Impaired migration of NOD mouse thymocytes: a fibronectin receptor-related defect. Eur. J. Immunol. 34, 1578–1587 (2004).

    CAS  PubMed  Google Scholar 

  • Poznansky, M.C. et al. Thymocyte emigration is mediated by active movement away from stroma-derived factors. J. Clin. Invest. 109, 1101–1110 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno, T. et al. Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 16, 205–218 (2002).

    CAS  PubMed  Google Scholar 

  • Barbee, S.D. & Alberola-Ila, J. Phosphatidylinositol 3-kinase regulates thymic exit. J. Immunol. 174, 1230–1238 (2005).

    CAS  PubMed  Google Scholar 

  • Boehm, T., Scheu, S., Pfeffer, K. & Bleul, C.C. Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTβR. J. Exp. Med. 198, 757–769 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, J.J. & Butcher, E.C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).

    CAS  PubMed  Google Scholar 

  • Ara, T. et al. A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J. Immunol. 170, 4649–4655 (2003).

    CAS  PubMed  Google Scholar 

  • Plotkin, J., Prockop, S.E., Lepique, A. & Petrie, H.T. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J. Immunol. 171, 4521–4527 (2003).

    CAS  PubMed  Google Scholar 

  • Misslitz, A. et al. Thymic T cell development and progenitor localization depend on CCR7. J. Exp. Med. 200, 481–491 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benz, C., Heinzel, K. & Bleul, C.C. Homing of immature thymocytes to the subcapsular microenvironment within the thymus is not an absolute requirement for T cell development. Eur. J. Immunol. 34, 3652–3663 (2004).

    CAS  PubMed  Google Scholar 

  • Ueno, T. et al. CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J. Exp. Med. 200, 493–505 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan, J. & Killeen, N. CCR7 directs the migration of thymocytes into the thymic medulla. J. Immunol. 172, 3999–4007 (2004).

    CAS  PubMed  Google Scholar 

  • Uehara, S., Grinberg, A., Farber, J.M. & Love, P.E. A role for CCR9 in T lymphocyte development and migration. J. Immunol. 168, 2811–2819 (2002).

    CAS  PubMed  Google Scholar 

  • Wurbel, M.A. et al. Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor γδ+ gut intraepithelial lymphocytes. Blood 98, 2626–2632 (2001).

    CAS  PubMed  Google Scholar 

  • Bousso, P., Bhakta, N.R., Lewis, R.S. & Robey, E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002).

    CAS  PubMed  Google Scholar 

  • Bhakta, N.R., Oh, D.Y. & Lewis, R.S. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat. Immunol. 6, 143–151 (2005).

    CAS  PubMed  Google Scholar 

  • Witt, C.M., Raychaudhuri, S., Schaefer, B., Chakraborty, A.K. & Robey, E.A. Directed migration of positively selected thymocytes visualized in real time. PLoS Biol. 3, 1062–1069 (2005).

    CAS  Google Scholar 

  • Bousso, P. & Robey, E. Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by 2-photon microscopy. Immunity 21, 349–355 (2004).

    CAS  PubMed  Google Scholar 

  • Kyewski, B. & Derbinski, J. Self-representation in the thymus: an extended view. Nat. Rev. Immunol. 4, 688–698 (2004).

    CAS  PubMed  Google Scholar 

  • Ramsey, C. et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum. Mol. Genet. 11, 397–409 (2002).

    CAS  PubMed  Google Scholar 

  • Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    CAS  PubMed  Google Scholar 

  • Ramsey, C., Bukrinsky, A. & Peltonen, L. Systematic mutagenesis of the functional domains of AIRE reveals their role in intracellular targeting. Hum. Mol. Genet. 11, 3299–3308 (2002).

    CAS  PubMed  Google Scholar 

  • Burkly, L. et al. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373, 531–536 (1995).

    CAS  PubMed  Google Scholar 

  • Kajiura, F. et al. NF-κB-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J. Immunol. 172, 2067–2075 (2004).

    CAS  PubMed  Google Scholar 

  • Derbinski, J. & Kyewski, B. Linking signalling pathways, thymic stroma integrity and autoimmunity. Trends Immunol. 26, 503–506 (2005).

    CAS  PubMed  Google Scholar 

  • Akiyama, T. et al. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308, 248–251 (2005).

    CAS  PubMed  Google Scholar 

  • Derbinski, J. et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med. 202, 33–45 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chin, R.K. et al. Lymphotoxin pathway directs thymic Aire expression. Nat. Immunol. 4, 1121–1127 (2003).

    CAS  PubMed  Google Scholar 

  • Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C.C. Aire regulates negative selection of organ-specific T cells. Nat. Immunol. 4, 350–354 (2003).

    CAS  PubMed  Google Scholar 

  • Anderson, M.S. et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239 (2005).

    CAS  PubMed  Google Scholar 

  • Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    CAS  PubMed  Google Scholar 

  • Gallegos, A.M. & Bevan, M.J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200, 1039–1049 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dooley, J., Erickson, M. & Farr, A.G. An organized medullary epithelial structure in the normal thymus expresses molecules of respiratory epithelium and resembles the epithelial thymic rudiment of nude mice. J. Immunol. 175, 4331–4337 (2005).

    CAS  PubMed  Google Scholar 

  • Watanabe, N. et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436, 1181–1185 (2005).

    CAS  PubMed  Google Scholar 

  • Shortman, K., Egerton, M., Spangrude, G.J. & Scollay, R. The generation and fate of thymocytes. Semin. Immunol. 2, 3–12 (1990).

    CAS  PubMed  Google Scholar 

  • Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352 (2005).

    CAS  PubMed  Google Scholar 

  • Paust, S. & Cantor, H. Regulatory T cells and autoimmune disease. Immunol. Rev. 204, 195–207 (2005).

    CAS  PubMed  Google Scholar 

  • Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    CAS  PubMed  Google Scholar 

  • Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  • Fontenot, J.D. & Rudensky, A.Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6, 331–337 (2005).

    CAS  PubMed  Google Scholar 

  • Farr, A.G., Dooley, J.L. & Erickson, M. Organization of thymic medullary epithelial heterogeneity: implications for mechanisms of epithelial differentiation. Immunol. Rev. 189, 20–27 (2002).

    CAS  PubMed  Google Scholar 

  • Leonard, W.J. TSLP: finally in the limelight. Nat. Immunol. 3, 605–607 (2002).

    CAS  PubMed  Google Scholar 

  • Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2005).

    CAS  PubMed  Google Scholar 

  • Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091–2096 (1995).

    CAS  PubMed  Google Scholar 

  • Coles, M.C. & Raulet, D.H. NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J. Immunol. 164, 2412–2418 (2000).

    CAS  PubMed  Google Scholar 

  • Wei, D.G. et al. Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J. Exp. Med. 202, 239–248 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forestier, C. et al. T cell development in mice expressing CD1d directed by a classical MHC class II promoter. J. Immunol. 171, 4096–4104 (2003).

    CAS  PubMed  Google Scholar 

  • Pasquier, B. et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J. Exp. Med. 201, 695–701 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols, K.E. et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat. Med. 11, 340–345 (2005).

    CAS  PubMed  Google Scholar 

  • Chung, B., Aoukaty, A., Dutz, J., Terhorst, C. & Tan, R. Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J. Immunol. 174, 3153–3157 (2005).

    CAS  PubMed  Google Scholar 

  • Borowski, C. & Bendelac, A. Signaling for NKT cell development: the SAP-FynT connection. J. Exp. Med. 201, 833–836 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes, S.M., Li, L. & Love, P.E. TCR signal strength influences αβ/γδ lineage fate. Immunity 22, 583–593 (2005).

    CAS  PubMed  Google Scholar 

  • Haks, M.C. et al. Attenuation of γδTCR signaling efficiently diverts thymocytes to the αβ lineage. Immunity 22, 595–606 (2005).

    CAS  PubMed  Google Scholar 

  • Robey, E. The αβ versus γδ T cell fate decision: when less is more. Immunity 22, 533–534 (2005).

    CAS  PubMed  Google Scholar 

  • Pennington, D.J. et al. The inter-relatedness and interdependence of mouse T cell receptor γδ+ and αβ+ cells. Nat. Immunol. 4, 991–998 (2003).

    CAS  PubMed  Google Scholar 

  • Silva-Santos, B., Pennington, D.J. & Hayday, A.C. Lymphotoxin-mediated regulation of γδ cell differentiation by αβ T cell progenitors. Science 307, 925–928 (2005).

    CAS  PubMed  Google Scholar 

  • Ikuta, K. et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62, 863–874 (1990).

    CAS  PubMed  Google Scholar 

  • Havran, W.L., Carbone, A. & Allison, J.P. Murine T cells with invariant γδ antigen receptors: origin, repertoire, and specificity. Semin. Immunol. 3, 89–97 (1991).

    CAS  PubMed  Google Scholar 

  • Zerrahn, J. et al. Class I MHC molecules on hematopoietic cells can support intrathymic positive selection of T cell receptor transgenic T cells. Proc. Natl. Acad. Sci. USA 96, 11470–11475 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, E.Y. et al. Thymocyte-thymocyte interaction for efficient positive selection and maturation of CD4 T cells. Immunity 23, 387–396 (2005).

    CAS  PubMed  Google Scholar 

  • Li, W. et al. An alternate pathway for CD4 T cell development: thymocyte-expressed MHC class II selects a distinct T cell population. Immunity 23, 375–386 (2005).

    CAS  PubMed  Google Scholar 

  • Choi, E.Y. et al. Thymocytes positively select thymocytes in human system. Hum. Immunol. 54, 15–20 (1997).

    CAS  PubMed  Google Scholar 

  • Traggiai, E. et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 104–107 (2004).

    CAS  PubMed  Google Scholar 

  • Yahata, T. et al. Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor γ null mice. J. Immunol. 169, 204–209 (2002).

    CAS  PubMed  Google Scholar 

  • Anderson, G. & Jenkinson, E.J. Lymphostromal interactions in thymic development and function. Nat. Rev. Immunol. 1, 31–40 (2001).

    CAS  PubMed  Google Scholar 

  • Clegg, C.H., Rulffes, J.T., Wallace, P.M. & Haugen, H.S. Regulation of an extrathymic T-cell development pathway by oncostatin M. Nature 384, 261–263 (1996).

    CAS  PubMed  Google Scholar 

  • Terra, R. et al. T-cell generation by lymph node resident progenitor cells. Blood 106, 193–200 (2005).

    CAS  PubMed  Google Scholar 

  • Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    CAS  PubMed  Google Scholar 

  • Poznansky, M.C. et al. Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat. Biotechnol. 18, 729–734 (2000).

    CAS  PubMed  Google Scholar 

  • Zuniga-Pflucker, J.C. T-cell development made simple. Nat. Rev. Immunol. 4, 67–72 (2004).

    CAS  PubMed  Google Scholar 

  • Clark, R., Yamanaka, K., Bai, M., Dowgiert, R. & Kupper, T. Human skin cells support thymus-independent T cell development. J. Clin. Invest. 115, 3239–3249 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robey, E.A. & Bluestone, J.A. Notch signaling in lymphocyte development and function. Curr. Opin. Immunol. 16, 360–366 (2004).

    CAS  PubMed  Google Scholar