nature.com

Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells - Nature Immunology

  • ️Shacter, Emily
  • ️Mon Nov 25 2002
  • Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  Google Scholar 

  • Shacter, E., Williams, J.A., Hinson, R.M., Senturker, S. & Lee, Y.J. Oxidative stress interferes with cancer chemotherapy: inhibition of lymphoma cell apoptosis and phagocytosis. Blood 96, 307–313 (2000).

    CAS  PubMed  Google Scholar 

  • Scaffidi, P., Misteli, T. & Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  Google Scholar 

  • Scott, R.S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211 (2001).

    Article  CAS  Google Scholar 

  • Cohen, P.L. et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med. 196, 135–140 (2002).

    Article  CAS  Google Scholar 

  • Fadok, V.A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992).

    CAS  Google Scholar 

  • Verhoven, B., Schlegel, R.A. & Williamson, P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med. 182, 1597–1601 (1995).

    Article  CAS  Google Scholar 

  • Martin, S.J. et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556 (1995).

    Article  CAS  Google Scholar 

  • Moffatt, O.D., Devitt, A., Bell, E.D., Simmons, D.L. & Gregory, C.D. Macrophage recognition of ICAM-3 on apoptotic leukocytes. J. Immunol. 162, 6800–6810 (1999).

    CAS  Google Scholar 

  • Anderson, H.A., Englert, R., Gursel, I. & Shacter, E. Oxidative stress inhibits the phagocytosis of apoptotic cells that have externalized phosphatidylserine. Cell. Death Differ. 9, 616–625 (2002).

    Article  CAS  Google Scholar 

  • Fadok, V.A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).

    Article  CAS  Google Scholar 

  • Devitt, A. et al. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392, 505–509 (1998).

    Article  CAS  Google Scholar 

  • Ogden, C.A. et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 194, 781–796 (2001).

    Article  CAS  Google Scholar 

  • Platt, N., Suzuki, H., Kurihara, Y., Kodama, T. & Gordon, S. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc. Natl. Acad. Sci. USA 93, 12456–12460 (1996).

    Article  CAS  Google Scholar 

  • Savill, J., Dransfield, I., Hogg, N. & Haslett, C. Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343, 170–173 (1990).

    Article  CAS  Google Scholar 

  • Finnemann, S.C. & Rodriguez-Boulan, E. Macrophage and retinal pigment epithelium phagocytosis: apoptotic cells and photoreceptors compete for αvβ3 and αvβ5 integrins, and protein kinase C regulates αvβ5 binding and cytoskeletal linkage. J. Exp. Med. 190, 861–874 (1999).

    Article  CAS  Google Scholar 

  • Albert, M.L., Kim, J.I. & Birge, R.B. αvβ5 integrin recruits the CrkII-Dock 180-rac1 complex for phagocytosis of apoptotic cells. Nat. Cell Biol. 2, 899–905 (2000).

    Article  CAS  Google Scholar 

  • Esmon, C.T. Regulation of blood coagulation. Biochim. Biophys. Acta. 1477, 349–360 (2000).

    Article  CAS  Google Scholar 

  • Dahlback, B. Blood coagulation. Lancet 355, 1627–1632 (2000).

    Article  CAS  Google Scholar 

  • Thomas, R.H. Hypercoagulability syndromes. Arch. Intern. Med. 161, 2433–2439 (2001).

    Article  CAS  Google Scholar 

  • Merrill, J.T. What causes the antiphospholipid syndrome? Curr. Rheumatol. Rep. 3, 293–300 (2001).

    Article  CAS  Google Scholar 

  • Rand, J.H. Molecular pathogenesis of the antiphospholipid syndrome. Circ. Res. 90, 29–37 (2002).

    Article  CAS  Google Scholar 

  • Mevorach, D., Mascarenhas, J.O., Gershov, D. & Elkon, K.B. Complement-dependent clearance of apoptotic cells by human macrophages. J. Exp. Med. 188, 2313–2320 (1998).

    Article  CAS  Google Scholar 

  • Esmon, C.T. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J. Biol. Chem. 264, 4743–4746 (1989).

    CAS  PubMed  Google Scholar 

  • Nelsestuen, G.L., Kisiel, W. & Di Scipio, R.G. Interaction of vitamin K dependent proteins with membranes. Biochem. 17, 2134–2138 (1978).

    Article  CAS  Google Scholar 

  • Walker, F.J. Regulation of activated protein C by a new protein. A possible function for bovine protein S. J. Biol. Chem. 255, 5521–5524 (1980).

    CAS  PubMed  Google Scholar 

  • May, W.S. &. Cuatrecasas, P. Transferrin receptor: its biological significance. J. Membr. Biol. 88, 205–215 (1985).

    Article  CAS  Google Scholar 

  • Stenflo, J. Contributions of Gla and EGF-like domains to the function of vitamin K- dependent coagulation factors. Crit. Rev. Eukary. Gene Expr. 9, 59–88 (1999).

    Article  CAS  Google Scholar 

  • Carreras, L.O. & Forastiero, R.R. Pathogenic role of antiprotein-phospholipid antibodies. Haemostasis 26 (Suppl. 4) 340–357 (1996).

    CAS  PubMed  Google Scholar 

  • Gal, A. et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat. Genet. 26, 270–271 (2000).

    Article  CAS  Google Scholar 

  • Krahling, S., Callahan, M.K., Williamson, P. & Schlegel, R.A. Exposure of phosphatidylserine is a general feature in the phagocytosis of apoptotic lymphocytes by macrophages. Cell Death Differ. 6, 183–189 (1999).

    Article  CAS  Google Scholar 

  • Stitt, T.N. et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80, 661–670 (1995).

    Article  CAS  Google Scholar 

  • Esmon, C.T. Inflammation. They're not just for clots anymore. Curr. Biol. 5, 743–746 (1995).

    Article  CAS  Google Scholar 

  • Godowski, P.J. et al. Reevaluation of the roles of protein S and Gas6 as ligands for the receptor tyrosine kinase Rse/Tyro 3. Cell 82, 355–368 (1995).

    Article  CAS  Google Scholar 

  • Ishimoto, Y., Ohashi, K., Mizuno, K. & Nakano, T. Promotion of the uptake of PS liposomes and apoptotic cells by a product of growth arrest-specific gene, gas6. J. Biochem. (Tokyo) 127, 411–717 (2000).

    Article  CAS  Google Scholar 

  • Hall, M.O. et al. Outer segment phagocytosis by cultured retinal pigment epithelial cells requires Gas6. Exp. Eye Res. 73, 509–520 (2001).

    Article  CAS  Google Scholar 

  • Lu, Q. et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398, 723–728 (1999).

    Article  CAS  Google Scholar 

  • Balasubramanian, K., Chandra, J. & Schroit, A.J. Immune clearance of phosphatidylserine-expressing cells by phagocytes. The role of β2-glycoprotein I in macrophage recognition. J. Biol. Chem. 272, 31113–31117 (1997).

    CAS  Google Scholar 

  • Savill, J., Hogg, N., Ren, Y. & Haslett, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90, 1513–1522 (1992).

    Article  CAS  Google Scholar 

  • Hanayama, R. et al. Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187 (2002).

    Article  CAS  Google Scholar 

  • Lee, Y.J. & Shacter, E. Oxidative stress inhibits apoptosis in human lymphoma cells. J. Biol. Chem. 274, 19792–19798 (1999).

    Article  CAS  Google Scholar 

  • Chang, M.K. et al. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc. Natl. Acad. Sci. USA 96, 6353–6358 (1999).

    Article  CAS  Google Scholar