nature.com

Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation - Nature Medicine

  • ️Hogg, Nancy
  • ️Sun Feb 22 2009
  • von Andrian, U.H. & Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  Google Scholar 

  • Hogg, N., Laschinger, M., Giles, K. & McDowall, A. T-cell integrins: more than just sticking points. J. Cell Sci. 116, 4695–4705 (2003).

    Article  CAS  Google Scholar 

  • Coller, B.S. & Shattil, S.J. The GPIIb/IIIa (integrin αIIbβ3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood 112, 3011–3025 (2008).

    Article  CAS  Google Scholar 

  • Kellermann, S.A., Dell, C.L., Hunt, S.W. III & Shimizu, Y. Genetic analysis of integrin activation in T lymphocytes. Immunol. Rev. 186, 172–188 (2002).

    Article  CAS  Google Scholar 

  • Kinashi, T. Intracellular signalling controlling integrin activation in lymphocytes. Nat. Rev. Immunol. 5, 546–559 (2005).

    Article  CAS  Google Scholar 

  • Anderson, D.C. & Springer, T.A. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu. Rev. Med. 38, 175–194 (1987).

    Article  CAS  Google Scholar 

  • Hogg, N. & Bates, P.A. Genetic analysis of integrin function in man: LAD-I and other syndromes. Matrix Biol. 19, 211–222 (2000).

    Article  CAS  Google Scholar 

  • Etzioni, A. & Alon, R. Leukocyte adhesion deficiency III: a group of integrin activation defects in hematopoietic lineage cells. Curr. Opin. Allergy Clin. Immunol. 4, 485–490 (2004).

    Article  CAS  Google Scholar 

  • Pasvolsky, R. et al. A LAD-III syndrome is associated with defective expression of the Rap-1 activator CalDAG-GEFI in lymphocytes, neutrophils, and platelets. J. Exp. Med. 204, 1571–1582 (2007).

    Article  CAS  Google Scholar 

  • Kuijpers, T.W. et al. Leukocyte adhesion deficiency type 1 (LAD-I)/variant. A novel immunodeficiency syndrome characterized by dysfunctional β2 integrins. J. Clin. Invest. 100, 1725–1733 (1997).

    Article  CAS  Google Scholar 

  • McDowall, A. et al. A novel form of integrin dysfunction involving β1, β2, and β3 integrins. J. Clin. Invest. 111, 51–60 (2003).

    Article  CAS  Google Scholar 

  • Kuijpers, T.W. et al. Natural history and early diagnosis of LAD-I/variant syndrome. Blood 109, 3529–3537 (2007).

    Article  CAS  Google Scholar 

  • Springett, G.M., Kawasaki, H. & Spriggs, D.R. Non-kinase second-messenger signaling: new pathways with new promise. Bioessays 26, 730–738 (2004).

    Article  CAS  Google Scholar 

  • Stone, J.C. Regulation of Ras in lymphocytes: get a GRP. Biochem. Soc. Trans. 34, 858–861 (2006).

    Article  CAS  Google Scholar 

  • Clyde-Smith, J. et al. Characterization of RasGRP2, a plasma membrane-targeted, dual specificity Ras/Rap exchange factor. J. Biol. Chem. 275, 32260–32267 (2000).

    Article  CAS  Google Scholar 

  • Crittenden, J.R. et al. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat. Med. 10, 982–986 (2004).

    Article  CAS  Google Scholar 

  • Bergmeier, W. et al. Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. J. Clin. Invest. 117, 1699–1707 (2007).

    Article  CAS  Google Scholar 

  • Ghandour, H., Cullere, X., Alvarez, A., Luscinskas, F.W. & Mayadas, T.N. Essential role for Rap1 GTPase and its guanine exchange factor CalDAG-GEFI in LFA-1 but not VLA-4 integrin mediated human T-cell adhesion. Blood 110, 3682–3690 (2007).

    Article  CAS  Google Scholar 

  • Cifuni, S.M., Wagner, D.D. & Bergmeier, W. CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbß3 in platelets. Blood 112, 1696–1703 (2008).

    Article  CAS  Google Scholar 

  • Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fassler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 14, 325–330 (2008).

    Article  CAS  Google Scholar 

  • Moser, M. et al. Kindlin-3 is required for β2 integrin–mediated leukocyte adhesion to endothelial cells. Nat. Med. Advance online publication doi:10.1038/nm.1921 (22 February 2009).

  • Ussar, S., Wang, H.V., Linder, S., Fassler, R. & Moser, M. The Kindlins: subcellular localization and expression during murine development. Exp. Cell Res. 312, 3142–3151 (2006).

    Article  CAS  Google Scholar 

  • Larjava, H., Plow, E.F. & Wu, C. Kindlins: essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep. 9, 1203–1208 (2008).

    Article  CAS  Google Scholar 

  • Siegel, D.H. et al. Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am. J. Hum. Genet. 73, 174–187 (2003).

    Article  CAS  Google Scholar 

  • Jobard, F. et al. Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome. Hum. Mol. Genet. 12, 925–935 (2003).

    Article  CAS  Google Scholar 

  • Garcia-Alvarez, B. et al. Structural determinants of integrin recognition by talin. Mol. Cell. 11, 49–58 (2003).

    Article  CAS  Google Scholar 

  • Weinstein, E.J. et al. URP1: a member of a novel family of PH and FERM domain-containing membrane-associated proteins is significantly over-expressed in lung and colon carcinomas. Biochim. Biophys. Acta. 1637, 207–216 (2003).

    Article  CAS  Google Scholar 

  • Kloeker, S. et al. The Kindler syndrome protein is regulated by transforming growth factor-β and involved in integrin-mediated adhesion. J. Biol. Chem. 279, 6824–6833 (2004).

    Article  CAS  Google Scholar 

  • Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 22, 1325–1330 (2008).

    Article  CAS  Google Scholar 

  • Ma, Y.Q., Qin, J., Wu, C. & Plow, E.F. Kindlin-2 (Mig-2): a co-activator of β3 integrins. J. Cell Biol. 181, 439–446 (2008).

    Article  CAS  Google Scholar 

  • Mory, A. et al. Kindlin-3: a new gene involved in the pathogenesis of LAD-III. Blood 112, 2591 (2008).

    Article  CAS  Google Scholar 

  • Campbell, I.D. & Ginsberg, M.H. The talin-tail interaction places integrin activation on FERM ground. Trends Biochem. Sci. 29, 429–435 (2004).

    Article  CAS  Google Scholar 

  • Calderwood, D.A. et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem. 277, 21749–21758 (2002).

    Article  CAS  Google Scholar 

  • Harris, E.S. et al. A novel syndrome of variant leukocyte adhesion deficiency involving defects in adhesion mediated by β1 and β2 integrins. Blood 97, 767–776 (2001).

    Article  CAS  Google Scholar 

  • Alon, R. et al. A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood 101, 4437–4445 (2003).

    Article  CAS  Google Scholar 

  • Smith, A. et al. A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes. J. Cell Biol. 170, 141–151 (2005).

    Article  CAS  Google Scholar