nature.com

Real-time imaging reveals the single steps of brain metastasis formation - Nature Medicine

  • ️Winkler, Frank
  • ️Sun Dec 20 2009
  • Steeg, P.S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895–904 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Palmieri, D., Chambers, A.F., Felding-Habermann, B., Huang, S. & Steeg, P.S. The biology of metastasis to a sanctuary site. Clin. Cancer Res. 13, 1656–1662 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Wyckoff, J.B., Jones, J.G., Condeelis, J.S. & Segall, J.E. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 60, 2504–2511 (2000).

    CAS  PubMed  Google Scholar 

  • Chambers, A.F., Groom, A.C. & MacDonald, I.C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563–572 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Al-Mehdi, A.B. et al. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat. Med. 6, 100–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi, K. et al. Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res. 66, 4208–4214 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ito, S. et al. Real-time observation of micrometastasis formation in the living mouse liver using a green fluorescent protein gene-tagged rat tongue carcinoma cell line. Int. J. Cancer 93, 212–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods 5, 1019–1021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fidler, I.J., Yano, S., Zhang, R.D., Fujimaki, T. & Bucana, C.D. The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol. 3, 53–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Seitz, G. et al. Imaging of cell trafficking and metastases of paediatric rhabdomyosarcoma. Cell Prolif. 41, 365–374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leenders, W.P. et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin. Cancer Res. 10, 6222–6230 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Luzzi, K.J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865–873 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, E.B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med. 7, 864–868 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1 and matrix metalloproteinases. Cancer Cell 6, 553–563 (2004).

    CAS  PubMed  Google Scholar 

  • Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, R.M. Advantages of multi-color fluorescent proteins for whole-body and in vivo cellular imaging. J. Biomed. Opt. 10, 41202 (2005).

    Article  PubMed  Google Scholar 

  • Rae, J.M., Creighton, C.J., Meck, J.M., Haddad, B.R. & Johnson, M.D. MDA-MB-435 cells are derived from M14 melanoma cells—a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res. Treat. 104, 13–19 (2007).

    Article  PubMed  Google Scholar 

  • Döme, B., Timar, J. & Paku, S. A novel concept of glomeruloid body formation in experimental cerebral metastases. J. Neuropathol. Exp. Neurol. 62, 655–661 (2003).

    Article  PubMed  Google Scholar 

  • Townson, J.L. & Chambers, A.F. Dormancy of solitary metastatic cells. Cell Cycle 5, 1744–1750 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Scherbarth, S. & Orr, F.W. Intravital videomicroscopic evidence for regulation of metastasis by the hepatic microvasculature: effects of interleukin-1α on metastasis and the location of B16F1 melanoma cell arrest. Cancer Res. 57, 4105–4110 (1997).

    CAS  PubMed  Google Scholar 

  • Wood, S. Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch. Pathol. 66, 550–568 (1958).

    PubMed  Google Scholar 

  • Kawaguchi, T., Tobai, S. & Nakamura, K. Extravascular migration of tumor cells in the brain: an electron microscopic study. Invasion Metastasis 2, 40–50 (1982).

    CAS  PubMed  Google Scholar 

  • Chambers, A.F., MacDonald, I.C., Schmidt, E.E., Morris, V.L. & Groom, A.C. Clinical targets for anti-metastasis therapy. Adv. Cancer Res. 79, 91–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Koop, S. et al. Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res. 55, 2520–2523 (1995).

    CAS  PubMed  Google Scholar 

  • Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Yano, S. et al. Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res. 60, 4959–4967 (2000).

    CAS  PubMed  Google Scholar 

  • Küsters, B. et al. Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res. 62, 341–345 (2002).

    PubMed  Google Scholar 

  • Küsters, B. et al. Micronodular transformation as a novel mechanism of VEGF-A–induced metastasis. Oncogene 26, 5808–5815 (2007).

    Article  PubMed  Google Scholar 

  • Weis, S., Cui, J., Barnes, L. & Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J. Cell Biol. 167, 223–229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmgren, L., O'Reilly, M.S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med. 1, 149–153 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Bouvet, M. et al. In vivo color-coded imaging of the interaction of colon cancer cells and splenocytes in the formation of liver metastases. Cancer Res. 66, 11293–11297 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy, S., Ross, K.N., Lander, E.S. & Golub, T.R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Kaye, A.H. & Laws, E.R. Brain Tumors: An Encyclopedic Approach. Ch. 49, 999–1026 (Churchill Livingstone, London, 2001).

  • Fidler, I.J. & Talmadge, J.E. Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell. Cancer Res. 46, 5167–5171 (1986).

    CAS  PubMed  Google Scholar 

  • Sellappan, S et al. Lineage infidelity of MDA-MB-435 cells: expression of melanocyte proteins in a breast cancer cell line. Cancer Res. 64, 3479–3485 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Schackert, G., Price, J.E., Bucana, C.D. & Fidler, I.J. Unique patterns of brain metastasis produced by different human carcinomas in athymic nude mice. Int. J. Cancer 44, 892–897 (1989).

    Article  CAS  PubMed  Google Scholar