nature.com

Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity - Nature Medicine

  • ️Weiser, Jeffrey N
  • ️Sun Jan 17 2010
  • Savage, D.C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31, 107–133 (1977).

    Article  CAS  Google Scholar 

  • Ley, R.E., Peterson, D.A. & Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).

    Article  CAS  Google Scholar 

  • Pamer, E.G. Immune responses to commensal and environmental microbes. Nat. Immunol. 8, 1173–1178 (2007).

    Article  CAS  Google Scholar 

  • Noverr, M.C. & Huffnagle, G.B. Does the microbiota regulate immune responses outside the gut? Trends Microbiol. 12, 562–568 (2004).

    Article  CAS  Google Scholar 

  • Noverr, M.C. & Huffnagle, G.B. The 'microflora hypothesis' of allergic diseases. Clin. Exp. Allergy 35, 1511–1520 (2005).

    Article  CAS  Google Scholar 

  • Kanneganti, T.D., Lamkanfi, M. & Nunez, G. Intracellular NOD-like receptors in host defense and disease. Immunity 27, 549–559 (2007).

    Article  CAS  Google Scholar 

  • Barton, G.M. & Medzhitov, R. Toll-like receptors and their ligands. Curr. Top. Microbiol. Immunol. 270, 81–92 (2002).

    CAS  PubMed  Google Scholar 

  • Mazmanian, S.K. & Kasper, D.L. The love-hate relationship between bacterial polysaccharides and the host immune system. Nat. Rev. Immunol. 6, 849–858 (2006).

    Article  CAS  Google Scholar 

  • Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  Google Scholar 

  • Hall, J.A. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29, 637–649 (2008).

    Article  CAS  Google Scholar 

  • Uematsu, S. et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 9, 769–776 (2008).

    Article  CAS  Google Scholar 

  • Mazmanian, S.K., Liu, C.H., Tzianabos, A.O. & Kasper, D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  Google Scholar 

  • Macpherson, A.J. & Harris, N.L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478–485 (2004).

    Article  CAS  Google Scholar 

  • Segal, A.W. How neutrophils kill microbes. Annu. Rev. Immunol. 23, 197–223 (2005).

    Article  CAS  Google Scholar 

  • Lysenko, E.S. et al. Nod1 signaling overcomes resistance of S. pneumoniae to opsonophagocytic killing. PLoS Pathog. 3, e118 (2007).

    Article  Google Scholar 

  • Standish, A.J. & Weiser, J.N. Human neutrophils kill Streptococcus pneumoniae via serine proteases. J. Immunol. 183, 2602–2609 (2009).

    Article  CAS  Google Scholar 

  • Brenchley, J.M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006).

    Article  CAS  Google Scholar 

  • Wyatt, J., Vogelsang, H., Hubl, W., Waldhoer, T. & Lochs, H. Intestinal permeability and the prediction of relapse in Crohn's disease. Lancet 341, 1437–1439 (1993).

    Article  CAS  Google Scholar 

  • Swaan, P.W. et al. Bacterial peptide recognition and immune activation facilitated by human peptide transporter PEPT2. Am. J. Respir. Cell Mol. Biol. 39, 536–542 (2008).

    Article  CAS  Google Scholar 

  • Ismair, M.G. et al. hPepT1 selectively transports muramyl dipeptide but not Nod1-activating muramyl peptides. Can. J. Physiol. Pharmacol. 84, 1313–1319 (2006).

    Article  CAS  Google Scholar 

  • Matthias, K.A., Roche, A.M., Standish, A.J., Shchepetov, M. & Weiser, J.N. Neutrophil-toxin interactions promote antigen delivery and mucosal clearance of Streptococcus pneumoniae. J. Immunol. 180, 6246–6254 (2008).

    Article  CAS  Google Scholar 

  • Redl, H., Bahrami, S., Schlag, G. & Traber, D.L. Clinical detection of LPS and animal models of endotoxemia. Immunobiology 187, 330–345 (1993).

    Article  CAS  Google Scholar 

  • Xu, X.L. et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4, 28–39 (2008).

    Article  CAS  Google Scholar 

  • Krueger, J.M. et al. Peptidoglycans as promoters of slow-wave sleep. II. Somnogenic and pyrogenic activities of some naturally occurring muramyl peptides; correlations with mass spectrometric structure determination. J. Biol. Chem. 259, 12659–12662 (1984).

    CAS  PubMed  Google Scholar 

  • Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  Google Scholar 

  • Kelly, C.P., Pothoulakis, C. & LaMont, J.T. Clostridium difficile colitis. N. Engl. J. Med. 330, 257–262 (1994).

    Article  CAS  Google Scholar 

  • Roche, A.M., King, S.J. & Weiser, J.N. Live attenuated Streptococcus pneumoniae strains induce serotype-independent mucosal and systemic protection in mice. Infect. Immun. 75, 2469–2475 (2007).

    Article  CAS  Google Scholar 

  • Mine, Y. et al. Immunoactive peptides, FK-156 and FK-565. III. Enhancement of host defense mechanisms against infection. J. Antibiot. (Tokyo) 36, 1059–1066 (1983).

    Article  CAS  Google Scholar 

  • Inohara, N. et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-κB. J. Biol. Chem. 274, 14560–14567 (1999).

    Article  CAS  Google Scholar 

  • Kufer, T.A., Kremmer, E., Banks, D.J. & Philpott, D.J. Role for erbin in bacterial activation of Nod2. Infect. Immun. 74, 3115–3124 (2006).

    Article  CAS  Google Scholar 

  • Clarke, T.B. et al. Mutational analysis of the substrate specificity of Escherichia coli penicillin binding protein 4. Biochemistry 48, 2675–2683 (2009).

    Article  CAS  Google Scholar