nature.com

The lymphatic vasculature in disease - Nature Medicine

  • ️Alitalo, Kari
  • ️Mon Nov 07 2011
  • Schulte-Merker, S., Sabine, A. & Petrova, T.V. Lymphatic vascular morphogenesis in development, physiology, and disease. J. Cell Biol. 193, 607–618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pflicke, H. & Sixt, M. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J. Exp. Med. 206, 2925–2935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baluk, P. et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest. 115, 247–257 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejana, E., Tournier-Lasserve, E. & Weinstein, B.M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell 16, 209–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer, F. et al. Distinct molecular composition of blood and lymphatic vascular endothelial cell junctions establishes specific functional barriers within the peripheral lymph node. Eur. J. Immunol. 38, 2142–2155 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Tal, O., et al. DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J. Exp. Med. 208, 2141–2153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norrmén, C., Tammela, T., Petrova, T.V. & Alitalo, K. Biological basis of therapeutic lymphangiogenesis. Circulation 123, 1335–1351 (2011).

    Article  PubMed  Google Scholar 

  • Karkkainen, M.J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wigle, J.T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Albrecht, I. & Christofori, G. Molecular mechanisms of lymphangiogenesis in development and cancer. Int. J. Dev. Biol. 55, 483–494 (2011).

    Article  CAS  PubMed  Google Scholar 

  • François, M. et al. Sox18 induces development of the lymphatic vasculature in mice. Nature 456, 643–647 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan, R.S. et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 24, 696–707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y. et al. Neuropilin-2 mediates VEGF-C–induced lymphatic sprouting together with VEGFR3. J. Cell Biol. 188, 115–130 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mäkinen, T. et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 19, 397–410 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niessen, K. et al. The Notch1-Dll4 signaling pathway regulates mouse postnatal lymphatic development. Blood 118, 1989–1997 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Zheng, W. et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood 118, 1154–1162 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Augustin, H.G., Koh, G.Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Hogan, B.M. et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet. 41, 396–398 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Bos, F.L. et al. CCBE1 Is Essential for Mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ. Res. 109, 486–491 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Galvagni, F. et al. Endothelial cell adhesion to the extracellular matrix induces c-Src–dependent VEGFR-3 phosphorylation without the activation of the receptor intrinsic kinase activity. Circ. Res. 106, 1839–1848 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Tammela, T., et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat. Cell Biol. 13, 1202–1213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhrin, P. et al. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 115, 3997–4005 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Bertozzi, C.C. et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 116, 661–670 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proulx, S.T. et al. Quantitative imaging of lymphatic function with liposomal indocyanine green. Cancer Res. 70, 7053–7062 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen, J.C., Tan, I.C., Marshall, M.V., Fife, C.E. & Sevick-Muraca, E.M. Lymphatic imaging in humans with near-infrared fluorescence. Curr. Opin. Biotechnol. 20, 74–82 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vakoc, B.J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15, 1219–1223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, L., Maslov, K., Shung, K.K. & Wang, L.V. Ultrasound-array–based real-time photoacoustic microscopy of human pulsatile dynamics in vivo. J. Biomed. Opt. 15, 021303 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Norrmén, C. et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J. Cell Biol. 185, 439–457 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanady, J.D., Dellinger, M.T., Munger, S.J., Witte, M.H. & Simon, A.M. Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev. Biol. 354, 253–266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrell, R.E. et al. GJC2 missense mutations cause human lymphedema. Am. J. Hum. Genet. 86, 943–948 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellor, R.H. et al. Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation 115, 1912–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Bazigou, E. et al. Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J. Clin. Invest. 121, 2984–2992 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karkkainen, M.J. et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl. Acad. Sci. USA 98, 12677–12682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostergaard, P., et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat. Genet. 43, 929–931 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Stanton, A.W., Modi, S., Mellor, R.H., Levick, J.R. & Mortimer, P.S. Recent advances in breast cancer-related lymphedema of the arm: lymphatic pump failure and predisposing factors. Lymphat. Res. Biol. 7, 29–45 (2009).

    Article  PubMed  Google Scholar 

  • McLaughlin, S.A. et al. Prevalence of lymphedema in women with breast cancer 5 years after sentinel lymph node biopsy or axillary dissection: objective measurements. J. Clin. Oncol. 26, 5213–5219 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tammela, T. et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat. Med. 13, 1458–1466 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Lähteenvuo, M. et al. Growth factor therapy and autologous lymph node transfer in lymphedema. Circulation 123, 613–620 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Cormier, J.N., Rourke, L., Crosby, M., Chang, D. & Armer, J. The surgical treatment of lymphedema: a systematic review of the contemporary literature (2004–2010). Ann. Surg. Oncol. published online, doi:10.1245/s10434-011-2017-4 (24 August 2011).

  • Saaristo, A.M. et al. Microvascular breast reconstruction and lymph node transfer for postmastectomy lymphedema patients. Ann. Surg. (in the press).

  • Becker, C., Assouad, J., Riquet, M. & Hidden, G. Postmastectomy lymphedema: long-term results following microsurgical lymph node transplantation. Ann. Surg. 243, 313–315 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tammela, T. & Alitalo, K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell 140, 460–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Rissanen, T.T. et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ. Res. 92, 1098–1106 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Anisimov, A. et al. Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle. Circ. Res. 104, 1302–1312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leppänen, V.M. et al. Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc. Natl. Acad. Sci. USA 107, 2425–2430 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kisko, K. et al. Structural analysis of vascular endothelial growth factor receptor-2/ligand complexes by small-angle X-ray solution scattering. FASEB J. 25, 2980–2986 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Leppänen, V.M. et al. Structural determinants of vascular endothelial growth factor-D receptor binding and specificity. Blood 117, 1507–1515 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Vondenhoff, M.F. et al. LTbetaR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J. Immunol. 182, 5439–5445 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Vondenhoff, M.F. et al. Lymph sacs are not required for the initiation of lymph node formation. Development 136, 29–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Förster, R., Davalos-Misslitz, A.C. & Rot, A. CCR7 and its ligands: balancing immunity and tolerance. Nat. Rev. Immunol. 8, 362–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Wick, N. et al. Lymphatic precollectors contain a novel, specialized subpopulation of podoplanin low, CCL27-expressing lymphatic endothelial cells. Am. J. Pathol. 173, 1202–1209 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham, T.H. et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J. Exp. Med. 207, 17–27 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karikoski, M. et al. Clever-1/Stabilin-1 regulates lymphocyte migration within lymphatics and leukocyte entrance to sites of inflammation. Eur. J. Immunol. 39, 3477–3487 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez, D., Vollmann, E.H. & von Andrian, U.H. Mechanisms and consequences of dendritic cell migration. Immunity 29, 325–342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phan, T.G., Green, J.A., Gray, E.E., Xu, Y. & Cyster, J.G. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat. Immunol. 10, 786–793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunder, C.A. et al. Mast cell-derived particles deliver peripheral signals to remote lymph nodes. J. Exp. Med. 206, 2455–2467 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, J.N. et al. Lymph node–resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J. Exp. Med. 207, 681–688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, S. et al. Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood 113, 2605–2613 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Kataru, R.P. et al. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance and inflammation resolution. Blood 113, 5650–5659 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Huggenberger, R. et al. An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117, 4667–4678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angeli, V. et al. B cell–driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24, 203–215 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kataru, R.P. et al. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34, 96–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Cueni, L.N. & Detmar, M. The lymphatic system in health and disease. Lymphat. Res. Biol. 6, 109–122 (2008).

    Article  PubMed  Google Scholar 

  • von der Weid, P.Y., Rehal, S. & Ferraz, J.G. Role of the lymphatic system in the pathogenesis of Crohn's disease. Curr. Opin. Gastroenterol. 27, 335–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Kerjaschki, D. et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat. Med. 12, 230–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Nykänen, A.I. et al. Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts. Circulation 121, 1413–1422 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque, R.J. et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat. Med. 15, 1023–1030 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, N. et al. Targeting lymphangiogenesis after islet transplantation prolongs islet allograft survival. Transplantation 92, 25–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lämmermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Miteva, D.O. et al. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ. Res. 106, 920–931 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Schumann, K. et al. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32, 703–713 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Johnson, L.A. & Jackson, D.G. Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration. Int. Immunol. 22, 839–849 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Bao, X. et al. Endothelial heparan sulfate controls chemokine presentation in recruitment of lymphocytes and dendritic cells to lymph nodes. Immunity 33, 817–829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podgrabinska, S. et al. Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via Mac-1/ICAM-1–dependent mechanism. J. Immunol. 183, 1767–1779 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Vetrano, S. et al. The lymphatic system controls intestinal inflammation and inflammation-associated colon cancer through the chemokine decoy receptor D6. Gut 59, 197–206 (2010).

    Article  PubMed  Google Scholar 

  • Gräbner, R. et al. Lymphotoxin Β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged Apoe−/− mice. J. Exp. Med. 206, 233–248 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van de Pavert, S.A. & Mebius, R.E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10, 664–674 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Muniz, L.R., Pacer, M.E., Lira, S.A. & Furtado, G.C. A critical role for dendritic cells in the formation of lymphatic vessels within tertiary lymphoid structures. J. Immunol. 187, 828–834 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Mounzer, R.H. et al. Lymphotoxin-Α contributes to lymphangiogenesis. Blood 116, 2173–2182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey, N.L. The link between lymphatic function and adipose biology. Ann. NY Acad. Sci. 1131, 82–88 (2008).

    Article  PubMed  Google Scholar 

  • Dixon, J.B. Lymphatic lipid transport: sewer or subway? Trends Endocrinol. Metab. 21, 480–487 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey, N.L. et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat. Genet. 37, 1072–1081 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Rutkowski, J.M. et al. Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema. Am. J. Pathol. 176, 1122–1129 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szuba, A. et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J. 16, 1985–1987 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Libby, P., Ridker, P.M. & Hansson, G.K. Inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol. 54, 2129–2138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kholová, I. et al. Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol-rich and calcified atherosclerotic lesions. Eur. J. Clin. Invest. 41, 487–497 (2011).

    Article  PubMed  Google Scholar 

  • Nakano, T. et al. Angiogenesis and lymphangiogenesis and expression of lymphangiogenic factors in the atherosclerotic intima of human coronary arteries. Hum. Pathol. 36, 330–340 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Lim, H.Y. et al. Hypercholesterolemic mice exhibit lymphatic vessel dysfunction and degeneration. Am. J. Pathol. 175, 1328–1337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Wang, H.W. et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat. Genet. 36, 687–693 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Cheng, F. et al. Virus-induced Notch-MT1-MMP axis leads to lymphatic endothelial-to-mesenchymal transition. Cell Host. Microbe (in the press).

  • Liu, R. et al. KSHV-induced notch components render endothelial and mural cell characteristics and cell survival. Blood 115, 887–895 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X. et al. Kaposi's sarcoma–associated herpesvirus activation of vascular endothelial growth factor receptor 3 alters endothelial function and enhances infection. J. Biol. Chem. 280, 26216–26224 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Tvorogov, D. et al. Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell 18, 630–640 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Harari, S., Torre, O. & Moss, J. Lymphangioleiomyomatosis: what do we know and what are we looking for? Eur. Respir. Rev. 20, 34–44 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormack, F.X. et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N. Engl. J. Med. 364, 1595–1606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyama, K. et al. Vascular endothelial growth factor-D is increased in serum of patients with lymphangioleiomyomatosis. Lymphat. Res. Biol. 4, 143–152 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Fukumura, D., Duda, D.G., Munn, L.L. & Jain, R.K. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17, 206–225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumprecht, V. et al. In vivo imaging of inflammation- and tumor-induced lymph node lymphangiogenesis by immuno-positron emission tomography. Cancer Res. 70, 8842–8851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leijte, J.A., van der Ploeg, I.M., Valdes Olmos, R.A., Nieweg, O.E. & Horenblas, S. Visualization of tumor blockage and rerouting of lymphatic drainage in penile cancer patients by use of SPECT/CT. J. Nucl. Med. 50, 364–367 (2009).

    Article  PubMed  Google Scholar 

  • Giuliano, A.E., et al. Association of occult metastases in sentinel lymph nodes and bone marrow with survival among women with early-stage invasive breast cancer. J. Am. Med. Assoc. 306, 385–393 (2011).

    Article  CAS  Google Scholar 

  • Louis-Sylvestre, C. et al. Axillary treatment in conservative management of operable breast cancer: dissection or radiotherapy? Results of a randomized study with 15 years of follow-up. J. Clin. Oncol. 22, 97–101 (2004).

    Article  PubMed  Google Scholar 

  • Chaffer, C.L. & Weinberg, R.A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Sleeman, J.P., Nazarenko, I. & Thiele, W. Do all roads lead to Rome? Routes to metastasis development. Int. J. Cancer 128, 2511–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Stoecklein, N.H. & Klein, C.A. Genetic disparity between primary tumours, disseminated tumour cells and manifest metastasis. Int. J. Cancer 126, 589–598 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Campbell, P.J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shields, J.D., Kourtis, I.C., Tomei, A.A., Roberts, J.M. & Swartz, M.A. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749–752 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Kim, M. et al. CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res. 70, 10411–10421 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Madsen, C.D. & Sahai, E. Cancer dissemination—lessons from leukocytes. Dev. Cell 19, 13–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Contassot, E., Preynat-Seauve, O., French, L. & Huard, B. Lymph node tumor metastases: more susceptible than primary tumors to CD8+ T cell immune destruction. Trends Immunol. 30, 569–573 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Kerjaschki, D. et al. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J. Clin. Invest. 121, 2000–2012 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Roberts, N. et al. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res. 66, 2650–2657 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Caunt, M. et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 13, 331–342 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Hooper, A.T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zbytek, B. et al. Current concepts of metastasis in melanoma. Expert Rev. Dermatol. 3, 569–585 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tammela, T. et al. Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis. Sci. Transl. Med. 3, 69ra11 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Goyal, S., Chauhan, S.K. & Dana, R. Blockade of prolymphangiogenic vascular endothelial growth factor C in dry eye disease. Arch. Ophthalmol. published online, doi:10.1001/archophthalmol.2011.266 (12 September 2011).

    Article  PubMed  Google Scholar 

  • Koch, S., Tugues, S., Li, X., Gualandi, L. & Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Biochem. J. 437, 169–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Saharinen, P. et al. Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. Genes Dev. 24, 875–880 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Xie, P., Opatowsky, Y. & Schlessinger, J. Direct contacts between extracellular membrane-proximal domains are required for VEGF receptor activation and cell signaling. Proc. Natl. Acad. Sci. USA 107, 1906–1911 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendrew, J. et al. An antibody targeted to VEGFR-2 Ig domains 4–7 inhibits VEGFR-2 activation and VEGFR-2–dependent angiogenesis without affecting ligand binding. Mol. Cancer Ther. 10, 770–783 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Koh, Y.J. et al. Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis and vascular leakage. Cancer Cell 18, 171–184 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Hashizume, H. et al. Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res. 70, 2213–2223 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, J.L. et al. A human monoclonal anti-ANG2 antibody leads to broad antitumor activity in combination with VEGF inhibitors and chemotherapy agents in preclinical models. Mol. Cancer Ther. 9, 145–156 (2010).

    Article  CAS  PubMed  Google Scholar