nature.com

Broadly neutralizing hemagglutinin stalk–specific antibodies require FcγR interactions for protection against influenza virus in vivo - Nature Medicine

  • ️Ravetch, Jeffrey V
  • ️Sun Jan 12 2014
  • World Health Organization. Influenza (Seasonal) Fact sheet 211 http://www.who.int/mediacentre/factsheets/fs211/en/ (2009).

  • Ahmed, R., Oldstone, M.B. & Palese, P. Protective immunity and susceptibility to infectious diseases: lessons from the 1918 influenza pandemic. Nat. Immunol. 8, 1188–1193 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez, O., Tsibane, T. & Basler, C.F. Neutralizing anti-influenza virus monoclonal antibodies: therapeutics and tools for discovery. Int. Rev. Immunol. 28, 69–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Couch, R.B. & Kasel, J.A. Immunity to influenza in man. Annu. Rev. Microbiol. 37, 529–549 (1983).

    Article  CAS  PubMed  Google Scholar 

  • Wang, T.T. & Palese, P. Biochemistry. Catching a moving target. Science 333, 834–835 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Skehel, J.J. & Wiley, D.C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Knossow, M. et al. Mechanism of neutralization of influenza virus infectivity by antibodies. Virology 302, 294–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Wiley, D.C., Wilson, I.A. & Skehel, J.J. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289, 373–378 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Dreyfus, C. et al. Highly conserved protective epitopes on influenza B viruses. Science 337, 1343–1348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbey-Martin, C. et al. An antibody that prevents the hemagglutinin low pH fusogenic transition. Virology 294, 70–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Ekiert, D.C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Abboud, N. et al. A requirement for FcgγR in antibody-mediated bacterial toxin neutralization. J. Exp. Med. 207, 2395–2405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bournazos, S., Chow, S.K., Abboud, N., Casadevall, A. & Ravetch, J.V. Human IgG Fc domain engineering enhances anti-toxin neutralizing antibody activity. J. Clin. Invest. (in the press).

  • Schmitz, N. et al. Universal vaccine against influenza virus: linking TLR signaling to anti-viral protection. Eur. J. Immunol. 42, 863–869 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Huber, V.C., Lynch, J.M., Bucher, D.J., Le, J. & Metzger, D.W. Fc receptor–mediated phagocytosis makes a significant contribution to clearance of influenza virus infections. J. Immunol. 166, 7381–7388 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn, F. & Ravetch, J.V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn, F. & Ravetch, J.V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Tan, G.S. et al. A pan-H1 anti-hemagglutinin monoclonal antibody with potent broad-spectrum efficacy in vivo. J. Virol. 86, 6179–6188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G.M. et al. Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proc. Natl. Acad. Sci. USA 109, 9047–9052 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Reale, M.A. et al. Characterization of monoclonal antibodies specific for sequential influenza A/PR/8/34 virus variants. J. Immunol. 137, 1352–1358 (1986).

    CAS  PubMed  Google Scholar 

  • Wrammert, J. et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208, 181–193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, P., DiLillo, D.J., Bournazos, S., Li, F. & Ravetch, J.V. Mouse model recapitulating human Fcγ receptor structural and functional diversity. Proc. Natl. Acad. Sci. USA 109, 6181–6186 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Manicassamy, B. et al. Protection of mice against lethal challenge with 2009 H1N1 influenza A virus by 1918-like and classical swine H1N1 based vaccines. PLoS Pathog. 6, e1000745 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jegaskanda, S. et al. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. J. Immunol. 190, 1837–1848 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Jegaskanda, S., Weinfurter, J.T., Friedrich, T.C. & Kent, S.J. Antibody-dependent cellular cytotoxicity (ADCC) is associated with control of pandemic H1N1 influenza virus infection of macaques. J. Virol. 87, 5512–5522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava, V. et al. Identification of dominant ADCC epitopes on hemagglutinin antigen of pandemic H1N1 influenza virus. J. Virol. 87, 5831–5840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alter, G., Malenfant, J.M. & Altfeld, M. CD107a as a functional marker for the identification of natural killer cell activity. J. Immunol. Methods 294, 15–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn, F. & Ravetch, J.V. Analyzing antibody–Fc-receptor interactions. Methods Mol. Biol. 415, 151–162 (2008).

    CAS  PubMed  Google Scholar 

  • El Bakkouri, K. et al. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J. Immunol. 186, 1022–1031 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Jegerlehner, A., Schmitz, N., Storni, T. & Bachmann, M.F. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J. Immunol. 172, 5598–5605 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Tedder, T.F., Baras, A. & Xiu, Y. Fcγ receptor–dependent effector mechanisms regulate CD19 and CD20 antibody immunotherapies for B lymphocyte malignancies and autoimmunity. Springer Semin. Immunopathol. 28, 351–364 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom, J.L. et al. Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties. Breast Cancer Res. 13, R123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clynes, R.A., Towers, T.L., Presta, L.G. & Ravetch, J.V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med. 6, 443–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Yang, X. et al. Cetuximab-mediated tumor regression depends on innate and adaptive immune responses. Mol. Ther. 21, 91–100 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Belser, J.A., Katz, J.M. & Tumpey, T.M. The ferret as a model organism to study influenza A virus infection. Dis. Model. Mech. 4, 575–579 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmerjahn, F. & Ravetch, J.V. Antibodies, Fc receptors and cancer. Curr. Opin. Immunol. 19, 239–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn, F. & Ravetch, J.V. FcγRs in health and disease. Curr. Top. Microbiol. Immunol. 350, 105–125 (2011).

    CAS  PubMed  Google Scholar 

  • Barkas, T. & Watson, C.M. Induction of an Fc conformational change by binding of antigen: the generation of protein A–reactive sites in chicken immunoglobulin. Immunology 36, 557–561 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilàr, F. & Zavodszky, P. Non-covalent interactions between Fab and Fc regions in immunoglobulin G molecules. Hydrogen-deuterium exchange studies. Eur. J. Biochem. 162, 57–61 (1987).

    Article  PubMed  Google Scholar 

  • Torres, M., Fernandez-Fuentes, N., Fiser, A. & Casadevall, A. The immunoglobulin heavy chain constant region affects kinetic and thermodynamic parameters of antibody variable region interactions with antigen. J. Biol. Chem. 282, 13917–13927 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Oda, M., Kozono, H., Morii, H. & Azuma, T. Evidence of allosteric conformational changes in the antibody constant region upon antigen binding. Int. Immunol. 15, 417–426 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Schlessinger, J., Steinberg, I.Z., Givol, D., Hochman, J. & Pecht, I. Antigen-induced conformational changes in antibodies and their Fab fragments studied by circular polarization of fluorescence. Proc. Natl. Acad. Sci. USA 72, 2775–2779 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong, H. et al. Peptide-conjugation induced conformational changes in human IgG1 observed by optimized negative-staining and individual-particle electron tomography. Sci. Rep. 3, 1089 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai, T., Li, M., Sylvestre, D., Clynes, R. & Ravetch, J.V. FcR γ chain deletion results in pleiotrophic effector cell defects. Cell 76, 519–529 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Takai, T., Ono, M., Hikida, M., Ohmori, H. & Ravetch, J.V. Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 379, 346–349 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Ioan-Facsinay, A. et al. FcγRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection. Immunity 16, 391–402 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hazenbos, W.L. et al. Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc γ RIII (CD16) deficient mice. Immunity 5, 181–188 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn, F. et al. FcγRIV deletion reveals its central role for IgG2a and IgG2b activity in vivo. Proc. Natl. Acad. Sci. USA 107, 19396–19401 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, F. & Ravetch, J.V. Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 333, 1030–1034 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmerjahn, F., Bruhns, P., Horiuchi, K. & Ravetch, J.V. FcγRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23, 41–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wang, T.T. et al. Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins. PLoS Pathog. 6, e1000796 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar