nature.com

Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases - Nature Medicine

  • ️Lee, Virginia M Y
  • ️Thu Feb 06 2014
  • Glenner, G.G. & Wong, C.W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Kosik, K.S., Joachim, C.L. & Selkoe, D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA 83, 4044–4048 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spillantini, M.G., Crowther, R.A., Jakes, R., Hasegawa, M. & Goedert, M. α-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA 95, 6469–6473 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  • DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Bolton, D.C., McKinley, M.P. & Prusiner, S.B. Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Ross, C.A. & Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med. 10 (suppl.), S10–S17 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Goedert, M. Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and α-synucleinopathies. Phil. Trans. R. Soc. Lond. B 354, 1101–1118 (1999).

    Article  CAS  Google Scholar 

  • Thorpe, J.R., Tang, H., Atherton, J. & Cairns, N.J. Fine structural analysis of the neuronal inclusions of frontotemporal lobar degeneration with TDP-43 proteinopathy. J. Neural Transm. 115, 1661–1671 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, W.L. & Dickson, D.W. Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta Neuropathol. 116, 205–213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S.J., Desplats, P., Sigurdson, C., Tsigelny, I. & Masliah, E. Cell-to-cell transmission of non-prion protein aggregates. Nature reviews. Neurology 6, 702–706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brundin, P., Melki, R. & Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 11, 301–307 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jucker, M. & Walker, L.C. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann. Neurol. 70, 532–540 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguzzi, A., Sigurdson, C. & Heikenwaelder, M. Molecular mechanisms of prion pathogenesis. Annu. Rev. Pathol. 3, 11–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Volpicelli-Daley, L.A. et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luk, K.C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, J.L. & Lee, V.M. Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 286, 15317–15331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909–913 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iba, M. et al. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy. J. Neurosci. 33, 1024–1037 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luk, K.C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 209, 975–986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda-Suzukake, M. et al. Prion-like spreading of pathological α-synuclein in brain. Brain 136, 1128–1138 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Stöhr, J. et al. Purified and synthetic Alzheimer's amyloid beta (Aβ) prions. Proc. Natl. Acad. Sci. USA 109, 11025–11030 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, L. et al. Trans-synaptic spread of tau pathology in vivo. PLoS ONE 7, e31302 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 73, 685–697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulusoy, A. et al. Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Mol. Med. 5, 1051–1059 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  • Haass, C. & Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid-β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Maeda, S. et al. Granular tau oligomers as intermediates of tau filaments. Biochemistry 46, 3856–3861 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Patterson, K.R. et al. Characterization of prefibrillar tau oligomers in vitro and in Alzheimer disease. J. Biol. Chem. 286, 23063–23076 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasagna-Reeves, C.A. et al. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci. Rep. 2, 700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira, J.R. et al. The most infectious prion protein particles. Nature 437, 257–261 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  • Braak, H. et al. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages). J. Neurol. 249, iii1–iii5 (2002).

    Article  Google Scholar 

  • Kosaka, K., Tsuchiya, K. & Yoshimura, M. Lewy body disease with and without dementia: a clinicopathological study of 35 cases. Clin. Neuropathol. 7, 299–305 (1988).

    CAS  PubMed  Google Scholar 

  • Thal, D.R., Rub, U., Orantes, M. & Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800 (2002).

    Article  PubMed  Google Scholar 

  • Brettschneider, J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. 74, 20–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C. & Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braak, H. & Del Tredici, K. Alzheimer's pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol. 121, 589–595 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Friedhoff, P., Schneider, A., Mandelkow, E.M. & Mandelkow, E. Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution. Biochemistry 37, 10223–10230 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Wood, S.J. et al. α-synuclein fibrillogenesis is nucleation-dependent: implications for the pathogenesis of Parkinson's disease. J. Biol. Chem. 274, 19509–19512 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl. Acad. Sci. USA 110, 9535–9540 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, J.W. et al. small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem. 288, 1856–1870 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Freundt, E.C. et al. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann. Neurol. 72, 517–524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapiola, T. et al. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch. Neurol. 66, 382–389 (2009).

    Article  PubMed  Google Scholar 

  • Mollenhauer, B. et al. Total CSF α-synuclein is lower in de novo Parkinson patients than in healthy subjects. Neurosci. Lett. 532, 44–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  • van Dijk, K.D. et al. Reduced α-synuclein levels in cerebrospinal fluid in Parkinson's disease are unrelated to clinical and imaging measures of disease severity. Eur. J. Neurol. doi:10.1111/ene.12176 (2013).

  • Yamada, K. et al. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J. Neurosci. 31, 13110–13117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmanouilidou, E. et al. Assessment of α-synuclein secretion in mouse and human brain parenchyma. PLoS ONE 6, e22225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmanouilidou, E. et al. Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30, 6838–6851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danzer, K.M. et al. Exosomal cell-to-cell transmission of α-synuclein oligomers. Mol. Neurodegener. 7, 42 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saman, S. et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 287, 3842–3849 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Vella, L.J. et al. Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J. Pathol. 211, 582–590 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Pooler, A.M., Phillips, E.C., Lau, D.H., Noble, W. & Hanger, D.P. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 14, 389–394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kfoury, N., Holmes, B.B., Jiang, H., Holtzman, D.M. & Diamond, M.I. Trans-cellular propagation of tau aggregation by fibrillar species. J. Biol. Chem. 287, 19440–19451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, P.H. et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat. Cell Biol. 11, 219–225 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Münch, C., O'Brien, J. & Bertolotti, A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc. Natl. Acad. Sci. USA 108, 3548–3553 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Frost, B., Jacks, R.L. & Diamond, M.I. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 284, 12845–12852 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes, B.B. et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc. Natl. Acad. Sci. USA doi:10.1073/pnas.1301440110 (2013).

  • Hansen, C. et al. α-synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121, 715–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl. Acad. Sci. USA 106, 13010–13015 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, J.L. & Lee, V.M. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau. FEBS Lett. 587, 717–723 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gousset, K. et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol. 11, 328–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Dietzschold, B. et al. Differences in cell-to-cell spread of pathogenic and apathogenic rabies virus in vivo and in vitro. J. Virol. 56, 12–18 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cearley, C.N. et al. Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol. Ther. 16, 1710–1718 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Cearley, C.N. & Wolfe, J.H. A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J. Neurosci. 27, 9928–9940 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summerford, C. & Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thoulouze, M.I. et al. The neural cell adhesion molecule is a receptor for rabies virus. J. Virol. 72, 7181–7190 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weissmann, C., Enari, M., Klohn, P.C., Rossi, D. & Flechsig, E. Transmission of prions. Proc. Natl. Acad. Sci. USA 99 (suppl. 4), 16378–16383 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irwin, D.J. et al. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70, 462–468 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown, P., Gajdusek, D.C., Gibbs, C.J. Jr. & Asher, D.M. Potential epidemic of Creutzfeldt-Jakob disease from human growth hormone therapy. N. Engl. J. Med. 313, 728–731 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Eisele, Y.S. et al. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science 330, 980–982 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimberlin, R.H. & Walker, C.A. Pathogenesis of mouse scrapie: effect of route of inoculation on infectivity titres and dose-response curves. J. Comp. Pathol. 88, 39–47 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Aguzzi, A. & Calella, A.M. Prions: protein aggregation and infectious diseases. Physiol. Rev. 89, 1105–1152 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Will, R.G. Acquired prion disease: iatrogenic CJD, variant CJD, kuru. Br. Med. Bull. 66, 255–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Braak, H. & Del Tredici, K. Neuroanatomy and pathology of sporadic Parkinson's disease. Adv. Anat. Embryol. Cell Biol. 201, 1–119 (2009).

    PubMed  Google Scholar 

  • Iwai, A. et al. The precursor protein of non-Aβ component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467–475 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Wang, F., Wang, X., Yuan, C.G. & Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 327, 1132–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colby, D.W. et al. Design and construction of diverse mammalian prion strains. Proc. Natl. Acad. Sci. USA 106, 20417–20422 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Makarava, N. et al. Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol. 119, 177–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goedert, M. et al. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383, 550–553 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Westaway, D. et al. Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell 76, 117–129 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Hsiao, K.K. et al. Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein. Proc. Natl. Acad. Sci. USA 91, 9126–9130 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, A.F. & Collinge, J. Subclinical prion infection. Trends Microbiol. 11, 578–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Sandberg, M.K., Al-Doujaily, H., Sharps, B., Clarke, A.R. & Collinge, J. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470, 540–542 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Arriagada, P.V., Growdon, J.H., Hedley-Whyte, E.T. & Hyman, B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 42, 631–639 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Roberson, E.D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ittner, L.M. et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell 142, 387–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Dahlgren, K.N. et al. Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem. 277, 32046–32053 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lambert, M.P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh, D.M. et al. Naturally secreted oligomers of amyloid-β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Wang, H.W. et al. Soluble oligomers of β-amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res. 924, 133–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Cohen, S.I. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. USA 110, 9758–9763 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, T.T., Lee, S.J., Rochet, J.C. & Lansbury, P.T. Jr. Annular α-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41, 10209–10217 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lashuel, H.A. et al. α-Synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322, 1089–1102 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Winner, B. et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. USA 108, 4194–4199 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Karpinar, D.P. et al. Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson's disease models. EMBO J. 28, 3256–3268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanik, S.A., Schultheiss, C.E., Volpicelli-Daley, L.A., Brunden, K.R. & Lee, V.M. Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J. Biol. Chem. 288, 15194–15210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittmann, C.W. et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293, 711–714 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  • SantaCruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguzzi, A., Heikenwalder, M. & Polymenidou, M. Insights into prion strains and neurotoxicity. Nat. Rev. Mol. Cell Biol. 8, 552–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Aoyagi, H., Hasegawa, M. & Tamaoka, A. Fibrillogenic nuclei composed of P301L mutant tau induce elongation of P301L tau but not wild-type tau. J. Biol. Chem. 282, 20309–20318 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Yonetani, M. et al. Conversion of wild-type α-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J. Biol. Chem. 284, 7940–7950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa, Y., Kaneko, K., Yamanaka, K. & Nukina, N. Mutation-dependent polymorphism of Cu,Zn-superoxide dismutase aggregates in the familial form of amyotrophic lateral sclerosis. J. Biol. Chem. 285, 22221–22231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, J.L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Petkova, A.T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Nekooki-Machida, Y. et al. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proc. Natl. Acad. Sci. USA 106, 9679–9684 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Heilbronner, G. et al. Seeded strain-like transmission of β-amyloid morphotypes in APP transgenic mice. EMBO Rep. 14, 1017–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morozova, O.A., March, Z.M., Robinson, A.S. & Colby, D.W. Conformational features of tau fibrils from Alzheimer's disease brain are faithfully propagated by unmodified recombinant protein. Biochemistry 52, 6960–6967 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Tolnay, M. & Probst, A. The neuropathological spectrum of neurodegenerative tauopathies. IUBMB Life 55, 299–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Dickson, D.W. Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration. J. Neurol. 246 (suppl. 2), II6–II15 (1999).

    Article  PubMed  Google Scholar 

  • Mayeux, R. et al. A population-based investigation of Parkinson's disease with and without dementia—relationship to age and gender. Arch. Neurol. 49, 492–497 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Morris, J.C., Drazner, M., Fulling, K., Grant, E.A. & Goldring, J. Clinical and pathological aspects of parkinsonism in Alzheimer's disease. A role for extranigral factors? Arch. Neurol. 46, 651–657 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Galpern, W.R. & Lang, A.E. Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann. Neurol. 59, 449–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Gidalevitz, T., Ben-Zvi, A., Ho, K.H., Brignull, H.R. & Morimoto, R.I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311, 1471–1474 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Galloway, P.G., Bergeron, C. & Perry, G. The presence of tau distinguishes Lewy bodies of diffuse Lewy body disease from those of idiopathic Parkinson disease. Neurosci. Lett. 100, 6–10 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Ishizawa, T., Mattila, P., Davies, P., Wang, D. & Dickson, D.W. Colocalization of tau and α-synuclein epitopes in Lewy bodies. J. Neuropathol. Exp. Neurol. 62, 389–397 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Lu, J.X. et al. Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue. Cell 154, 1257–1268 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Korecka, J.A., Verhaagen, J. & Hol, E.M. Cell-replacement and gene-therapy strategies for Parkinson's and Alzheimer's disease. Regen. Med. 2, 425–446 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Kordower, J.H., Chu, Y., Hauser, R.A., Freeman, T.B. & Olanow, C.W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat. Med. 14, 504–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Li, J.Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Schenk, D.B., Seubert, P., Grundman, M. & Black, R. Aβ immunotherapy: lessons learned for potential treatment of Alzheimer's disease. Neurodegener. Dis. 2, 255–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Banks, W.A. et al. Passage of amyloid β protein antibody across the blood-brain barrier in a mouse model of Alzheimer's disease. Peptides 23, 2223–2226 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Couch, J.A. et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci. Transl. Med. 5, 183ra157 (2013).

    Article  CAS  Google Scholar 

  • Caughey, B. & Lansbury, P.T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Dobson, C.M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Wolynes, P.G., Onuchic, J.N. & Thirumalai, D. Navigating the folding routes. Science 267, 1619–1620 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Browning, S., Mahal, S.P., Oelschlegel, A.M. & Weissmann, C. Darwinian evolution of prions in cell culture. Science 327, 869–872 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Ghaemmaghami, S. et al. Conformational transformation and selection of synthetic prion strains. J. Mol. Biol. 413, 527–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonaka, T., Watanabe, S.T., Iwatsubo, T. & Hasegawa, M. Seeded aggregation and toxicity of α-synuclein and tau: cellular models of neurodegenerative diseases. J. Biol. Chem. 285, 34885–34898 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luk, K.C. et al. Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl. Acad. Sci. USA 106, 20051–20056 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, A.K. et al. Induction of amyloid fibrils by the C-terminal fragments of TDP-43 in amyotrophic lateral sclerosis. J. Am. Chem. Soc. 132, 1186–1187 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Nonaka, T. et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 4, 124–134 (2013).

    Article  CAS  PubMed  Google Scholar