nature.com

Metformin activates a duodenal Ampk–dependent pathway to lower hepatic glucose production in rats - Nature Medicine

  • ️Lam, Tony K T
  • ️Mon Apr 06 2015
  • Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010).

    Article  CAS  Google Scholar 

  • Fullerton, M.D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013).

    Article  CAS  Google Scholar 

  • Madiraju, A.K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014).

    Article  CAS  Google Scholar 

  • Miller, R.A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).

    Article  CAS  Google Scholar 

  • Shaw, R.J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    Article  CAS  Google Scholar 

  • Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  Google Scholar 

  • Lam, T.K. Neuronal regulation of homeostasis by nutrient sensing. Nat. Med. 16, 392–395 (2010).

    Article  CAS  Google Scholar 

  • Taylor, S.I. Deconstructing type 2 diabetes. Cell 97, 9–12 (1999).

    Article  CAS  Google Scholar 

  • Hundal, R.S. et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49, 2063–2069 (2000).

    Article  CAS  Google Scholar 

  • Radziuk, J., Zhang, Z., Wiernsperger, N. & Pye, S. Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver. Diabetes 46, 1406–1413 (1997).

    Article  CAS  Google Scholar 

  • Stumvoll, M., Nurjhan, N., Perriello, G., Dailey, G. & Gerich, J.E. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 333, 550–554 (1995).

    Article  CAS  Google Scholar 

  • Salpeter, S.R., Buckley, N.S., Kahn, J.A. & Salpeter, E.E. Meta-analysis: metformin treatment in persons at risk for diabetes mellitus. Am. J. Med. 121, 149 e2–157 e2 (2008).

    Article  CAS  Google Scholar 

  • Owen, M.R., Doran, E. & Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000).

    Article  CAS  Google Scholar 

  • Hawley, S.A. et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 11, 554–565 (2010).

    Article  CAS  Google Scholar 

  • Wang, P.Y. et al. Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production. Nature 452, 1012–1016 (2008).

    Article  CAS  Google Scholar 

  • Cheung, G.W., Kokorovic, A., Lam, C.K., Chari, M. & Lam, T.K. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab. 10, 99–109 (2009).

    Article  CAS  Google Scholar 

  • Rasmussen, B.A. et al. Jejunal leptin-PI3K signaling lowers glucose production. Cell Metab. 19, 155–161 (2014).

    Article  CAS  Google Scholar 

  • Breen, D.M. et al. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat. Med. 18, 950–955 (2012).

    Article  CAS  Google Scholar 

  • Stepensky, D., Friedman, M., Raz, I. & Hoffman, A. Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metab. Dispos. 30, 861–868 (2002).

    Article  CAS  Google Scholar 

  • Maida, A., Lamont, B.J., Cao, X. & Drucker, D.J. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-alpha in mice. Diabetologia 54, 339–349 (2011).

    Article  CAS  Google Scholar 

  • Shin, N.R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).

    Article  CAS  Google Scholar 

  • Vardarli, I., Arndt, E., Deacon, C.F., Holst, J.J. & Nauck, M.A. Effects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and ″isoglycemic″ intravenous glucose. Diabetes 63, 663–674 (2014).

    Article  CAS  Google Scholar 

  • Harmel, E. et al. AMPK in the small intestine in normal and pathophysiological conditions. Endocrinology 155, 873–888 (2014).

    Article  Google Scholar 

  • Bain, J. et al. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408, 297–315 (2007).

    Article  CAS  Google Scholar 

  • He, G. et al. AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity. Mol. Cell. Biol. 34, 148–157 (2014).

    Article  Google Scholar 

  • Rasmussen, B.A. et al. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats. Gastroenterology 142, 834 e3–843.e3 (2012).

    Article  CAS  Google Scholar 

  • Richards, P. et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes 63, 1224–1233 (2014).

    Article  CAS  Google Scholar 

  • Yusta, B. et al. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 4, 391–406 (2006).

    Article  CAS  Google Scholar 

  • Samuel, V.T. et al. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with Type 2 Diabetes. Proc. Natl. Acad. Sci. USA 106, 12121–12126 (2009).

    Article  CAS  Google Scholar 

  • Viollet, B. et al. Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. (Lond.) 122, 253–270 (2012).

    Article  CAS  Google Scholar 

  • Shackelford, D.B. et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23, 143–158 (2013).

    Article  CAS  Google Scholar 

  • Pollak, M. Overcoming drug development bottlenecks with repurposing: repurposing biguanides to target energy metabolism for cancer treatment. Nat. Med. 20, 591–593 (2014).

    Article  CAS  Google Scholar 

  • Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Article  Google Scholar 

  • Wilcock, C. & Bailey, C.J. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 24, 49–57 (1994).

    Article  CAS  Google Scholar 

  • Habib, A.M. et al. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153, 3054–3065 (2012).

    Article  CAS  Google Scholar 

  • Mulherin, A.J. et al. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology 152, 4610–4619 (2011).

    Article  CAS  Google Scholar 

  • Ono, H. et al. Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. J. Clin. Invest. 118, 2959–2968 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J. et al. Overfeeding rapidly induces leptin and insulin resistance. Diabetes 50, 2786–2791 (2001).

    Article  CAS  Google Scholar 

  • Filippi, B.M., Yang, C.S., Tang, C. & Lam, T.K. Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production. Cell Metab. 16, 500–510 (2012).

    Article  CAS  Google Scholar 

  • Kokorovic, A. et al. Duodenal mucosal protein kinase C-delta regulates glucose production in rats. Gastroenterology 141, 1720–1727 (2011).

    Article  CAS  Google Scholar 

  • da Silva Xavier, G. et al. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem. J. 371, 761–774 (2003).

    Article  CAS  Google Scholar 

  • Choi, Y.H., Kim, S.G. & Lee, M.G. Dose-independent pharmacokinetics of metformin in rats: hepatic and gastrointestinal first-pass effects. J. Pharm. Sci. 95, 2543–2552 (2006).

    Article  CAS  Google Scholar 

  • Graham, G.G. et al. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 50, 81–98 (2011).

    Article  CAS  Google Scholar 

  • Sakamoto, K. et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 24, 1810–1820 (2005).

    Article  CAS  Google Scholar 

  • Dale, S., Wilson, W.A., Edelman, A.M. & Hardie, D.G. Similar substrate recognition motifs for mammalian Amp-activated protein kinase, higher-plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 361, 191–195 (1995).

    Article  CAS  Google Scholar