nature.com

Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells - Nature Medicine

  • ️Lapidot, Tsvee
  • ️Sun May 21 2006
  • Teitelbaum, S.L. Bone resorption by osteoclasts. Science 289, 1504–1508 (2000).

    Article  CAS  Google Scholar 

  • Boyle, W.J., Simonet, W.S. & Lacey, D.L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    Article  CAS  Google Scholar 

  • Adams, G.B. & Scadden, D.T. The hematopoietic stem cell in its place. Nat. Immunol. 7, 333–337 (2006).

    Article  CAS  Google Scholar 

  • Ponomaryov, T. et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J. Clin. Invest. 106, 1331–1339 (2000).

    Article  CAS  Google Scholar 

  • Cottler-Fox, M.H. et al. Stem cell mobilization. Hematology (Am. Soc. Hematol. Educ. Program) 419–437 (2003).

  • Lapidot, T., Dar, A. & Kollet, O. How do stem cells find their way home? Blood 106, 1901–1910 (2005).

    Article  CAS  Google Scholar 

  • Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires mmp-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    Article  CAS  Google Scholar 

  • Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3, 687–694 (2002).

    Article  CAS  Google Scholar 

  • Levesque, J.P., Hendy, J., Takamatsu, Y., Simmons, P.J. & Bendall, L.J. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J. Clin. Invest. 111, 187–196 (2003).

    Article  CAS  Google Scholar 

  • Takamatsu, Y. et al. Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood 92, 3465–3473 (1998).

    CAS  PubMed  Google Scholar 

  • Watanabe, T. et al. Effect of granulocyte colony-stimulating factor on bone metabolism during peripheral blood stem cell mobilization. Int. J. Hematol. 77, 75–81 (2003).

    Article  CAS  Google Scholar 

  • Rothe, L. et al. Human osteoclasts and osteoclast-like cells synthesize and release high basal and inflammatory stimulated levels of the potent chemokine interleukin-8. Endocrinology 139, 4353–4363 (1998).

    Article  CAS  Google Scholar 

  • Pruijt, J.F. et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc. Natl. Acad. Sci. USA 96, 10863–10868 (1999).

    Article  CAS  Google Scholar 

  • Kollet, O. et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J. Clin. Invest. 112, 160–169 (2003).

    Article  CAS  Google Scholar 

  • Blavier, L. & Delaisse, J.M. Matrix metalloproteinases are obligatory for the migration of preosteoclasts to the developing marrow cavity of primitive long bones. J. Cell Sci. 108, 3649–3659 (1995).

    CAS  PubMed  Google Scholar 

  • Vu, T.H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422 (1998).

    Article  CAS  Google Scholar 

  • Goto, T., Yamaza, T. & Tanaka, T. Cathepsins in the osteoclast. J. Electron Microsc. (Tokyo) 52, 551–558 (2003).

    Article  CAS  Google Scholar 

  • Stier, S. et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201, 1781–1791 (2005).

    Article  CAS  Google Scholar 

  • Nilsson, S.K. et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106, 1232–1239 (2005).

    Article  CAS  Google Scholar 

  • Merry, K., Dodds, R., Littlewood, A. & Gowen, M. Expression of osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone. J. Cell Sci. 104, 1013–1020 (1993).

    CAS  PubMed  Google Scholar 

  • Gowen, M. et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J. Bone Miner. Res. 14, 1654–1663 (1999).

    Article  CAS  Google Scholar 

  • Chiusaroli, R. et al. Tyrosine phosphatase epsilon is a positive regulator of osteoclast function in vitro and in vivo. Mol. Biol. Cell 15, 234–244 (2004).

    Article  CAS  Google Scholar 

  • Molendijk, W.J., van Oudenaren, A., van Dijk, H., Daha, M.R. & Benner, R. Complement split product C5a mediates the lipopolysaccharide-induced mobilization of CFU-s and haemopoietic progenitor cells, but not the mobilization induced by proteolytic enzymes. Cell Tissue Kinet. 19, 407–417 (1986).

    CAS  PubMed  Google Scholar 

  • Grassi, F. et al. Human osteoclasts express different CXC chemokines depending on cell culture substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12. Histochem. Cell Biol. 120, 391–400 (2003).

    Article  CAS  Google Scholar 

  • Wright, L.M. et al. Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone 36, 840–853 (2005).

    Article  CAS  Google Scholar 

  • Yu, X., Huang, Y., Collin-Osdoby, P. & Osdoby, P. Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J. Bone Miner. Res. 18, 1404–1418 (2003).

    Article  CAS  Google Scholar 

  • Fujii, K. et al. Elevation of serum hepatocyte growth factor during granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. Br. J. Haematol. 124, 190–194 (2004).

    Article  CAS  Google Scholar 

  • Grano, M. et al. Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. Proc. Natl. Acad. Sci. USA 93, 7644–7648 (1996).

    Article  CAS  Google Scholar 

  • Zaidi, M., Inzerillo, A.M., Moonga, B.S., Bevis, P.J. & Huang, C.L. Forty years of calcitonin–where are we now? A tribute to the work of Iain Macintyre, FRS. Bone 30, 655–663 (2002).

    Article  CAS  Google Scholar 

  • Christopherson, K.W., Cooper, S. & Broxmeyer, H.E. Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood 101, 4680–4686 (2003).

    Article  CAS  Google Scholar 

  • McQuibban, G.A. et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J. Biol. Chem. 276, 43503–43508 (2001).

    Article  CAS  Google Scholar 

  • Johnell, O. & Hulth, A. Proliferation of osteoclasts in rat bone following bleeding and femoral fractures. Calcif. Tissue Res. 23, 241–244 (1977).

    Article  CAS  Google Scholar 

  • Abu-Amer, Y., Ross, F.P., Edwards, J. & Teitelbaum, S.L. Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J. Clin. Invest. 100, 1557–1565 (1997).

    Article  CAS  Google Scholar 

  • Crestani, B. et al. Differential role of neutrophils and alveolar macrophages in hepatocyte growth factor production in pulmonary fibrosis. Lab. Invest. 82, 1015–1022 (2002).

    Article  CAS  Google Scholar 

  • Armbrust, T., Batusic, D., Xia, L. & Ramadori, G. Early gene expression of hepatocyte growth factor in mononuclear phagocytes of rat liver after administration of carbon tetrachloride. Liver 22, 486–494 (2002).

    Article  CAS  Google Scholar 

  • Matsuda-Hashii, Y. et al. Hepatocyte growth factor plays roles in the induction and autocrine maintenance of bone marrow stromal cell IL-11, SDF-1 alpha, and stem cell factor. Exp. Hematol. 32, 955–961 (2004).

    Article  CAS  Google Scholar 

  • Hattori, K. et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97, 3354–3360 (2001).

    Article  CAS  Google Scholar 

  • Shen, H. et al. CXCR-4 desensitization is associated with tissue localization of hemopoietic progenitor cells. J. Immunol. 166, 5027–5033 (2001).

    Article  CAS  Google Scholar 

  • Grassi, F. et al. CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients. J. Cell. Physiol. 199, 244–251 (2004).

    Article  CAS  Google Scholar 

  • Janowska-Wieczorek, A., Matsuzaki, A. & Marquez, L.A. The hematopoietic microenvironment: matrix metalloproteinases in the hematopoietic microenvironment. Hematology 4, 515–527 (2000).

    Article  CAS  Google Scholar 

  • Dar, A. et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat. Immunol. 6, 1038–1046 (2005).

    Article  CAS  Google Scholar 

  • Lee, S.K., Gardner, A.E., Kalinowski, J.F., Jastrzebski, S.L. & Lorenzo, J.A. RANKL-stimulated osteoclast-like cell formation in vitro is partially dependent on endogenous interleukin-1 production. Bone 38, 678–685 (2005).

    Article  Google Scholar 

  • Jones, D.H. et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 692–696 (2006).

    Article  CAS  Google Scholar 

  • Okada, Y. et al. Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab. Invest. 72, 311–322 (1995).

    CAS  PubMed  Google Scholar 

  • Perez-Amodio, S., Beertsen, W. & Everts, V. (Pre-)osteoclasts induce retraction of osteoblasts before their fusion to osteoclasts. J. Bone Miner. Res. 19, 1722–1731 (2004).

    Article  CAS  Google Scholar 

  • Semerad, C.L. et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106, 3020–3027 (2005).

    Article  CAS  Google Scholar 

  • Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    Article  CAS  Google Scholar 

  • Adams, G.B. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439, 599–603 (2005).

    Article  Google Scholar 

  • Vaaraniemi, J. et al. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J. Bone Miner. Res. 19, 1432–1440 (2004).

    Article  CAS  Google Scholar 

  • Kiviranta, R. et al. Impaired bone resorption in cathepsin K-deficient mice is partially compensated for by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio. Bone 36, 159–172 (2005).

    Article  CAS  Google Scholar