nature.com

Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor - Nature Neuroscience

  • ️Carter, Bruce D
  • ️Sun Nov 15 2009

References

  1. Bennet, M.R., Gibson, W.G. & Lemon, G. Neuronal cell death, nerve growth factor and neurotrophic models: 50 years on. Auton. Neurosci. 95, 1–23 (2002).

    Article  CAS  Google Scholar 

  2. Hamburger, V. & Levi-Montalcini, R. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J. Exp. Zool. 111, 457–501 (1949).

    Article  CAS  Google Scholar 

  3. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2, 965–975 (2002).

    Article  CAS  Google Scholar 

  4. Yuan, J., Lipinski, M. & Degterev, A. Diversity in the mechanisms of neuronal cell death. Neuron 40, 401–413 (2003).

    Article  CAS  Google Scholar 

  5. Hume, D.A., Perry, V.H. & Gordon, S. Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J. Cell Biol. 97, 253–257 (1983).

    Article  CAS  Google Scholar 

  6. Perry, V.H., Hume, D.A. & Gordon, S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15, 313–326 (1985).

    Article  CAS  Google Scholar 

  7. O'Connor, T.M. & Wyttenbach, C.R. Cell death in the embryonic chick spinal cord. J. Cell Biol. 60, 448–459 (1974).

    Article  CAS  Google Scholar 

  8. Pannese, E. The response of the satellite and other non-neuronal cells to the degeneration of neuroblasts in chick embryo spinal ganglia. Cell Tissue Res. 190, 1–14 (1978).

    Article  CAS  Google Scholar 

  9. Bratton, D.L. & Henson, P.M. Apoptotic cell recognition: will the real phosphatidylserine receptor(s) please stand up? Curr. Biol. 18, R76–R79 (2008).

    Article  CAS  Google Scholar 

  10. Gregory, C.D. & Brown, S.B. Apoptosis: eating sensibly. Nat. Cell Biol. 7, 1161–1163 (2005).10.1038/ncb1205-1161

    Article  PubMed  Google Scholar 

  11. Grimsley, C. & Ravichandran, K.S. Cues for apoptotic cell engulfment: eat-me, don't eat-me and come-get-me signals. Trends Cell Biol. 13, 648–656 (2003).

    Article  CAS  Google Scholar 

  12. Henson, P.M. & Hume, D.A. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol. 27, 244–250 (2006).

    Article  CAS  Google Scholar 

  13. Freeman, M.R., Delrow, J., Kim, J., Johnson, E. & Doe, C.Q. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38, 567–580 (2003).

    Article  CAS  Google Scholar 

  14. Zhou, Z., Hartwieg, E. & Horvitz, H.R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43–56 (2001).

    Article  CAS  Google Scholar 

  15. Awasaki, T. et al. Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50, 855–867 (2006).

    Article  CAS  Google Scholar 

  16. MacDonald, J.M. et al. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50, 869–881 (2006).

    Article  CAS  Google Scholar 

  17. Manaka, J. et al. Draper-mediated and phosphatidylserine-independent phagocytosis of apoptotic cells by Drosophila hemocytes/macrophages. J. Biol. Chem. 279, 48466–48476 (2004).

    Article  CAS  Google Scholar 

  18. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  Google Scholar 

  19. Hamon, Y. et al. Cooperation between engulfment receptors: the case of ABCA1 and MEGF10. PLoS One 1, e120 (2006).

    Article  Google Scholar 

  20. Fariñas, I., Yoshida, C.K., Backus, C. & Reichardt, L.F. Lack of neurotrophin-3 results in death of spinal sensory neurons and premature differentiation of their precursors. Neuron 17, 1065–1078 (1996).

    Article  Google Scholar 

  21. White, F.A. et al. Synchronous onset of NGF and TrkA survival dependence in developing dorsal root ganglia. J. Neurosci. 16, 4662–4672 (1996).

    Article  CAS  Google Scholar 

  22. Kurtz, A. et al. The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120, 2637–2649 (1994).

    CAS  PubMed  Google Scholar 

  23. Schreiner, S. et al. Hypomorphic Sox10 alleles reveal novel protein functions and unravel developmental differences in glial lineages. Development 134, 3271–3281 (2007).

    Article  CAS  Google Scholar 

  24. Taylor, M.K., Yeager, K. & Morrison, S.J. Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development 134, 2435–2447 (2007).

    Article  CAS  Google Scholar 

  25. Woodhoo, A., Dean, C.H., Droggiti, A., Mirsky, R. & Jessen, K.R. The trunk neural crest and its early glial derivatives: a study of survival responses, developmental schedules and autocrine mechanisms. Mol. Cell. Neurosci. 25, 30–41 (2004).

    Article  CAS  Google Scholar 

  26. Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).

    Article  CAS  Google Scholar 

  27. Fariñas, I., Cano-Jaimez, M., Bellmunt, E. & Soriano, M. Regulation of neurogenesis by neurotrophins in developing spinal sensory ganglia. Brain Res. Bull. 57, 809–816 (2002).

    Article  Google Scholar 

  28. Maro, G.S. et al. Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat. Neurosci. 7, 930–938 (2004).

    Article  CAS  Google Scholar 

  29. Ernfors, P., Lee, K.F., Kucera, J. & Jaenisch, R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77, 503–512 (1994).

    Article  CAS  Google Scholar 

  30. Tessarollo, L., Vogel, K.S., Palko, M.E., Reid, S.W. & Parada, L.F. Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc. Natl. Acad. Sci. USA 91, 11844–11848 (1994).

    Article  CAS  Google Scholar 

  31. Murphy, P. et al. The regulation of Krox-20 expression reveals important steps in the control of peripheral glial cell development. Development 122, 2847–2857 (1996).

    CAS  PubMed  Google Scholar 

  32. Okada, A., Lansford, R., Weimann, J.M., Fraser, S.E. & McConnell, S.K. Imaging cells in the developing nervous system with retrovirus expressing modified green fluorescent protein. Exp. Neurol. 156, 394–406 (1999).

    Article  CAS  Google Scholar 

  33. Hoopfer, E.D. et al. Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50, 883–895 (2006).

    Article  CAS  Google Scholar 

  34. Suzuki, E. & Nakayama, M. MEGF10 is a mammalian ortholog of CED-1 that interacts with clathrin assembly protein complex 2 medium chain and induces large vacuole formation. Exp. Cell Res. 313, 3729–3742 (2007).

    Article  CAS  Google Scholar 

  35. Griffin, J.W., George, R. & Ho, T. Macrophage systems in peripheral nerves. A review. J. Neuropathol. Exp. Neurol. 52, 553–560 (1993).

    Article  CAS  Google Scholar 

  36. Hirata, K. & Kawabuchi, M. Myelin phagocytosis by macrophages and nonmacrophages during Wallerian degeneration. Microsc. Res. Tech. 57, 541–547 (2002).

    Article  Google Scholar 

  37. Bishop, D.L., Misgeld, T., Walsh, M.K., Gan, W.B. & Lichtman, J.W. Axon branch removal at developing synapses by axosome shedding. Neuron 44, 651–661 (2004).

    Article  CAS  Google Scholar 

  38. Aldskogius, H. & Arvidsson, J. Nerve cell degeneration and death in the trigeminal ganglion of the adult rat following peripheral nerve transection. J. Neurocytol. 7, 229–250 (1978).

    Article  CAS  Google Scholar 

  39. Hanani, M. Satellite glial cells in sensory ganglia: from form to function. Brain Res. Brain Res. Rev. 48, 457–476 (2005).

    Article  CAS  Google Scholar 

  40. Fenzi, F., Benedetti, M.D., Moretto, G. & Rizzuto, N. Glial cell and macrophage reactions in rat spinal ganglion after peripheral nerve lesions: an immunocytochemical and morphometric study. Arch. Ital. Biol. 139, 357–365 (2001).

    CAS  PubMed  Google Scholar 

  41. Yu, X., Lu, N. & Zhou, Z. Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS Biol. 6, e61 (2008).

    Article  Google Scholar 

  42. Ravichandran, K.S. & Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nat. Rev. Immunol. 7, 964–974 (2007).

    Article  CAS  Google Scholar 

  43. Reddien, P.W., Cameron, S. & Horvitz, H.R. Phagocytosis promotes programmed cell death in C. elegans. Nature 412, 198–202 (2001).

    Article  CAS  Google Scholar 

  44. Kurant, E., Axelrod, S., Leaman, D. & Gaul, U. Six-microns-under acts upstream of Draper in the glial phagocytosis of apoptotic neurons. Cell 133, 498–509 (2008).

    Article  CAS  Google Scholar 

  45. Ziegenfuss, J.S. et al. Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signaling. Nature 453, 935–939 (2008).

    Article  CAS  Google Scholar 

  46. Nagata, S. Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors. Immunol. Rev. 220, 237–250 (2007).

    Article  CAS  Google Scholar 

  47. Silva, M.T., do Vale, A. & Dos Santos, N.M. Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis 13, 463–482 (2008).

    Article  Google Scholar 

  48. Wu, H.H. et al. Autoregulation of neurogenesis by GDF11. Neuron 37, 197–207 (2003).

    Article  CAS  Google Scholar 

  49. Jin, Y., Jorgensen, E., Hartwieg, E. & Horvitz, H.R. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission, but not synaptic development. J. Neurosci. 19, 539–548 (1999).

    Article  CAS  Google Scholar 

Download references