nature.com

Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β - Nature Neuroscience

  • ️Mucke, Lennart
  • ️Sun Mar 24 2013
  • Brasnjevic, I., Hof, P.R., Steinbusch, H.W. & Schmitz, C. Accumulation of nuclear DNA damage or neuron loss: molecular basis for a new approach to understanding selective neuronal vulnerability in neurodegenerative diseases. DNA Repair (Amst.) 7, 1087–1097 (2008).

    Article  CAS  Google Scholar 

  • Moreira, P.I. et al. Nucleic acid oxidation in Alzheimer disease. Free Radic. Biol. Med. 44, 1493–1505 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Bonner, W.M. et al. γH2AX and cancer. Nat. Rev. Cancer 8, 957–967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail, I.H. & Hendzel, M.J. The γ-H2A.X: is it just a surrogate marker of double-strand breaks or much more? Environ. Mol. Mutagen. 49, 73–82 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Kim, D. et al. Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60, 803–817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Capetillo, O. et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev. Cell 4, 497–508 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.Y. et al. Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. J. Biol. Chem. 285, 29525–29534 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, B. et al. Histone H2AX stabilizes broken DNA strands to suppress chromosome breaks and translocations during V(D)J recombination. J. Exp. Med. 206, 2625–2639 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando, R.N. et al. Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proc. Natl. Acad. Sci. USA 108, 5837–5842 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe, S.L., Movsesyan, V.A., Jorgensen, T.J. & Kondratyev, A. Rapid phosphorylation of histone H2A.X following ionotropic glutamate receptor activation. Eur. J. Neurosci. 23, 2351–2361 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Crowe, S.L., Tsukerman, S., Gale, K., Jorgensen, T.J. & Kondratyev, A.D. Phosphorylation of histone H2A.X as an early marker of neuronal endangerment following seizures in the adult rat brain. J. Neurosci. 31, 7648–7656 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palop, J.J. et al. Vulnerability of dentate granule cells to disruption of Arc expression in human amyloid precursor protein transgenic mice. J. Neurosci. 25, 9686–9693 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazdarjanova, A. et al. Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. J. Comp. Neurol. 498, 317–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Cheng, I.H. et al. Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem. 282, 23818–23828 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Palop, J.J. et al. Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer's disease-related cognitive deficits. Proc. Natl. Acad. Sci. USA 100, 9572–9577 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palop, J.J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron 55, 697–711 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palop, J.J. & Mucke, L. Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13, 812–818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberson, E.D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Götz, J. & Ittner, L.M. Animal models of Alzheimer's disease and frontotemporal dementia. Nat. Rev. Neurosci. 9, 532–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, D.T. & Chen, K.S. Behavioral phenotypes of amyloid-based genetically modified mouse models of Alzheimer's disease. Genes Brain Behav. 4, 173–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Marchetti, C. & Marie, H. Hippocampal synaptic plasticity in Alzheimer's disease: what have we learned so far from transgenic models? Rev. Neurosci. 22, 373–402 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Lange, J. et al. ATM controls meiotic double-strand-break formation. Nature 479, 237–240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fillingham, J., Keogh, M.C. & Krogan, N.J. γH2AX and its role in DNA double-strand break repair. Biochem. Cell Biol. 84, 568–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Anderson, L., Henderson, C. & Adachi, Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol. Cell Biol. 21, 1719–1729 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward, I.M., Minn, K., Jorda, K.G. & Chen, J. Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J. Biol. Chem. 278, 19579–19582 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Olive, P.L. & Banath, J.P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Flint, M.S., Baum, A., Chambers, W.H. & Jenkins, F.J. Induction of DNA damage, alteration of DNA repair and transcriptional activation by stress hormones. Psychoneuroendocrinology 32, 470–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Harris, J.A. et al. Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 68, 428–441 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberson, E.D. et al. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on Tau levels in multiple mouse models of Alzheimer's disease. J. Neurosci. 31, 700–711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verret, L. et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palop, J.J. & Mucke, L. Epilepsy and cognitive impairments in Alzheimer disease. Arch. Neurol. 66, 435–440 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris, M., Maeda, S., Vossel, K. & Mucke, L. The many faces of tau. Neuron 70, 410–426 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez, P.E. et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model. Proc. Natl. Acad. Sci. USA 109, E2895–E2903 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardingham, G.E. & Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S. et al. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J. Neurosci. 31, 6627–6638 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shull, E.R. et al. Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev. 23, 171–180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhogal, N., Jalali, F. & Bristow, R.G. Microscopic imaging of DNA repair foci in irradiated normal tissues. Int. J. Radiat. Biol. 85, 732–746 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Grudzenski, S., Raths, A., Conrad, S., Rube, C.E. & Lobrich, M. Inducible response required for repair of low-dose radiation damage in human fibroblasts. Proc. Natl. Acad. Sci. USA 107, 14205–14210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canugovi, C. et al. Endonuclease VIII-like 1 (NEIL1) promotes short-term spatial memory retention and protects from ischemic stroke-induced brain dysfunction and death in mice. Proc. Natl. Acad. Sci. USA 109, 14948–14953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Goodyer, C. & LeBlanc, A. Selective and protracted apoptosis in human primary neurons microinjected with active caspase-3,-6,-7, and -8. J. Neurosci. 20, 8384–8389 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H.G. et al. Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer's disease. Neurochem. Int. 54, 84–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Cheung, T., Chen, J. & Herrup, K. A comparative study of five mouse models of Alzheimer's disease: cell cycle events reveal new insights into neurons at risk for death. Int. J. Alzheimers Dis. 2011, 171464 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Morris, M. et al. Age-appropriate cognition and subtle dopamine-independent motor deficits in aged Tau knockout mice. Neurobiol. Aging doi:10.1016/j.neurobiolaging.2012.12.003 (16 January 2013).

  • Cissé, M. et al. Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469, 47–52 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Li, S. et al. Soluble oligomers of amyloid β-protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62, 788–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito, L. et al. Reduction in mitochondrial superoxide dismutase modulates Alzheimer's disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J. Neurosci. 26, 5167–5179 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J.L., Tadokoro, T., Keijzers, G., Mattson, M.P. & Bohr, V.A. Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1. J. Biol. Chem. 285, 28191–28199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day, J.J. & Sweatt, J.D. Epigenetic mechanisms in cognition. Neuron 70, 813–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gräff, J., Kim, D., Dobbin, M.M. & Tsai, L.H. Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol. Rev. 91, 603–649 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Cheng, J.S. et al. Collagen VI protects neurons against Aβ toxicity. Nat. Neurosci. 12, 119–121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kravitz, A.V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spink, A.J., Tegelenbosch, R.A.J., Buma, M.O.S. & Noldus, L.P.J.J. The EthoVision video tracking system—a tool for behavioral phenotyping of transgenic mice. Physiol. Behav. 73, 731–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Pong, K., Doctrow, S.R., Huffman, K., Adinolfi, C.A. & Baudry, M. Attenuation of staurosporine-induced apoptosis, oxidative stress, and mitochondrial dysfunction by synthetic superoxide dismutase and catalase mimetics, in cultured cortical neurons. Exp. Neurol. 171, 84–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Rong, Y., Doctrow, S.R., Tocco, G. & Baudry, M. EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc. Natl. Acad. Sci. USA 96, 9897–9902 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Development Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-102 (2011).