nature.com

Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes - Nature Neuroscience

  • ️McKinnon, Peter J
  • ️Sun May 04 2014
  • McKinnon, P.J. DNA repair deficiency and neurological disease. Nat. Rev. Neurosci. 10, 100–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson, S.P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Driscoll, M. & Jeggo, P.A. The role of double-strand break repair—insights from human genetics. Nat. Rev. Genet. 7, 45–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  • McKinnon, P.J. Maintaining genome stability in the nervous system. Nat. Neurosci. 16, 1523–1529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shull, E.R. et al. Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev. 23, 171–180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suberbielle, E. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-beta. Nat. Neurosci. 16, 613–621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lavin, M.F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signaling and cancer. Nat. Rev. Mol. Cell Biol. 9, 759–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. & McKinnon, P.J. Responding to DNA double strand breaks in the nervous system. Neuroscience 145, 1365–1374 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013).

    CAS  PubMed  Google Scholar 

  • Stracker, T.H. & Petrini, J.H. The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell Biol. 12, 90–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, A.M., Groom, A. & Byrd, P.J. Ataxia-telangiectasia-like disorder (ATLD): its clinical presentation and molecular basis. DNA Repair (Amst.) 3, 1219–1225 (2004).

    Article  CAS  Google Scholar 

  • Takai, H. et al. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J. 21, 5195–5205 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Date, H. et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat. Genet. 29, 184–188 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Caldecott, K.W. Single-strand break repair and genetic disease. Nat. Rev. Genet. 9, 619–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  • McKinnon, P.J. ATM and the molecular pathogenesis of ataxia telangiectasia. Annu. Rev. Pathol. 7, 303–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Takashima, H. et al. Mutation of TDP1, encoding a topoisomerase I–dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat. Genet. 32, 267–272 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Ahel, I. et al. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 443, 713–716 (2006).

    Article  CAS  PubMed  Google Scholar 

  • El-Khamisy, S.F. et al. Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 434, 108–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Alagoz, M., Chiang, S.C., Sharma, A. & El-Khamisy, S.F. ATM deficiency results in accumulation of DNA–topoisomerase I covalent intermediates in neural cells. PLoS ONE 8, e58239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, C.P., Ban, Y., Lyu, Y.L., Desai, S.D. & Liu, L.F. A ubiquitin-proteasome pathway for the repair of topoisomerase I–DNA covalent complexes. J. Biol. Chem. 283, 21074–21083 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sordet, O. et al. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I–induced DNA double-strand breaks. EMBO Rep. 10, 887–893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pommier, Y. et al. Repair of topoisomerase I–mediated DNA damage. Prog. Nucleic Acid Res. Mol. Biol. 81, 179–229 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J.C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Wu, H.Y. & Liu, L.F. DNA looping alters local DNA conformation during transcription. J. Mol. Biol. 219, 615–622 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6, 789–802 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Katyal, S. et al. TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J. 26, 4720–4731 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitiss, J.L., Soans, E., Rogojina, A., Seth, A. & Mishina, M. Topoisomerase Assays (John Wiley & Sons, 2012).

  • Subramanian, D., Rosenstein, B.S. & Muller, M.T. Ultraviolet-induced DNA damage stimulates topoisomerase I–DNA complex formation in vivo: possible relationship with DNA repair. Cancer Res. 58, 976–984 (1998).

    CAS  PubMed  Google Scholar 

  • Heideker, J., Prudden, J., Perry, J.J., Tainer, J.A. & Boddy, M.N. SUMO-targeted ubiquitin ligase, Rad60, and Nse2 SUMO ligase suppress spontaneous Top1-mediated DNA damage and genome instability. PLoS Genet. 7, e1001320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiang, Y.H., Hertzberg, R., Hecht, S. & Liu, L.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 260, 14873–14878 (1985).

    CAS  PubMed  Google Scholar 

  • Sakasai, R., Teraoka, H., Takagi, M. & Tibbetts, R.S. Transcription-dependent activation of ataxia telangiectasia mutated prevents DNA-dependent protein kinase–mediated cell death in response to topoisomerase I poison. J. Biol. Chem. 285, 15201–15208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang, S.C., Carroll, J. & El-Khamisy, S.F. TDP1 serine 81 promotes interaction with DNA ligase IIIalpha and facilitates cell survival following DNA damage. Cell Cycle 9, 588–595 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Das, B.B. et al. Optimal function of the DNA repair enzyme TDP1 requires its phosphorylation by ATM and/or DNA-PK. EMBO J. 28, 3667–3680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lin, C.P., Ban, Y., Lyu, Y.L. & Liu, L.F. Proteasome-dependent processing of topoisomerase I–DNA adducts into DNA double strand breaks at arrested replication forks. J. Biol. Chem. 284, 28084–28092 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, Y., Sun, M., Desai, S.D. & Liu, L.F. SUMO-1 conjugation to topoisomerase I: a possible repair response to topoisomerase-mediated DNA damage. Proc. Natl. Acad. Sci. USA 97, 4046–4051 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzog, K.H., Chong, M.J., Kapsetaki, M., Morgan, J.I. & McKinnon, P.J. Requirement for Atm in ionizing radiation–induced cell death in the developing central nervous system. Science 280, 1089–1091 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. et al. ATR maintains select progenitors during nervous system development. EMBO J. 31, 1177–1189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y. et al. The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1. Nat. Neurosci. 12, 973–980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourquier, P. et al. Trapping of mammalian topoisomerase I and recombinations induced by damaged DNA containing nicks or gaps. Importance of DNA end phosphorylation and camptothecin effects. J. Biol. Chem. 272, 26441–26447 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Pourquier, P. et al. Effects of uracil incorporation, DNA mismatches, and abasic sites on cleavage and religation activities of mammalian topoisomerase I. J. Biol. Chem. 272, 7792–7796 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Beal, M.F. Oxidatively modified proteins in aging and disease. Free Radic. Biol. Med. 32, 797–803 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Palmeri, S. et al. Clinical course of two Italian siblings with ataxia-telangiectasia-like disorder. Cerebellum 12, 596–599 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Vos, S.M., Tretter, E.M., Schmidt, B.H. & Berger, J.M. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat. Rev. Mol. Cell Biol. 12, 827–841 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neale, B.M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King, I.F. et al. Topoisomerases facilitate transcription of long genes linked to autism. Nature 501, 58–62 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoll, G. et al. Deletion of TOP3beta, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders. Nat. Neurosci. 16, 1228–1237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, D. et al. Top3beta is an RNA topoisomerase that works with fragile X syndrome protein to promote synapse formation. Nat. Neurosci. 16, 1238–1247 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar