nature.com

TRPC5 is a regulator of hippocampal neurite length and growth cone morphology - Nature Neuroscience

  • ️Clapham, David E
  • ️Sun Jul 13 2003
  • Berridge, M.J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).

    Article  CAS  Google Scholar 

  • Berridge, M.J., Lipp, P. & Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 1, 11–21 (2000).

    Article  CAS  Google Scholar 

  • Crabtree, G.R. Calcium, calcineurin, and the control of transcription. J. Biol. Chem. 276, 2313–2316 (2001).

    Article  CAS  Google Scholar 

  • Gomez, T.M., Robles, E., Poo, M. & Spitzer, N.C. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291, 1983–1987 (2001).

    Article  CAS  Google Scholar 

  • Gomez, T.M. & Spitzer, N.C. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397, 350–355 (1999).

    Article  CAS  Google Scholar 

  • Spitzer, N.C., Lautermilch, N.J., Smith, R.D. & Gomez, T.M. Coding of neuronal differentiation by calcium transients. Bioessays 22, 811–817 (2000).

    Article  CAS  Google Scholar 

  • Clapham, D.E., Runnels, L.W. & Strübing, C. The TRP ion channel family. Nat. Rev. Neurosci. 2, 387–396 (2001).

    Article  CAS  Google Scholar 

  • Harteneck, C., Plant, T.D. & Schultz, G. From worm to man: three subfamilies of TRP channels. Trends Neurosci. 23, 159–166 (2000).

    Article  CAS  Google Scholar 

  • Montell, C., Birnbaumer, L. & Flockerzi, V. The TRP channels, a remarkably functional family. Cell 108, 595–598 (2002).

    Article  CAS  Google Scholar 

  • Strübing, C., Krapivinsky, G., Krapivinsky, L. & Clapham, D.E. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29, 645–655 (2001).

    Article  Google Scholar 

  • Schaefer, M. et al. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J. Biol. Chem. 275, 17517–17526 (2000).

    Article  CAS  Google Scholar 

  • Hofmann, T., Schaefer, M., Schultz, G. & Gudermann, T. Subunit composition of mammalian transient receptor potential channels in living cells. Proc. Natl. Acad. Sci. USA 99, 7461–7466 (2002).

    Article  CAS  Google Scholar 

  • Okada, T. et al. Molecular cloning and functional characterization of a novel receptor- activated TRP Ca2+ channel from mouse brain. J. Biol. Chem. 273, 10279–10287 (1998).

    Article  CAS  Google Scholar 

  • Okada, T. et al. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J. Biol. Chem. 274, 27359–27370 (1999).

    Article  CAS  Google Scholar 

  • Bartlett, W.P. & Banker, G.A. An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. I. Cells which develop without intercellular contacts. J. Neurosci. 4, 1944–1953 (1984).

    Article  CAS  Google Scholar 

  • Weed, S.A. & Parsons, J.T. Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20, 6418–6434 (2001).

    Article  CAS  Google Scholar 

  • Weaver, A.M. et al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr. Biol. 11, 370–374 (2001).

    Article  CAS  Google Scholar 

  • Weed, S.A., Du, Y. & Parsons, J.T. Translocation of cortactin to the cell periphery is mediated by the small GTPase Rac1. J. Cell. Sci. 111, 2433–2443 (1998).

    CAS  PubMed  Google Scholar 

  • Du, Y., Weed, S.A., Xiong, W.C., Marshall, T.D. & Parsons, J.T. Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Mol. Cell. Biol. 18, 5838–5851 (1998).

    Article  CAS  Google Scholar 

  • Martin, T.F. Prime movers of synaptic vesicle exocytosis. Neuron 34, 9–12 (2002).

    Article  CAS  Google Scholar 

  • Chen, Y.A. & Scheller, R.H. SNARE-mediated membrane fusion. Nat. Rev. Mol. Cell. Biol. 2, 98–106 (2001).

    Article  CAS  Google Scholar 

  • Ahmari, S.E., Buchanan, J. & Smith, S.J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nat. Neurosci. 3, 445–451 (2000).

    Article  CAS  Google Scholar 

  • Nakata, T., Terada, S. & Hirokawa, N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol. 140, 659–674 (1998).

    Article  CAS  Google Scholar 

  • Jung, S. et al. Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J. Biol. Chem. 278, 3562–3571 (2003).

    Article  CAS  Google Scholar 

  • Nadler, M.J.S. et al. LTRPC7 is a Mg–ATP-regulated divalent cation channel required for cell viability. Nature 411, 590–595 (2001).

    Article  CAS  Google Scholar 

  • Runnels, L.W., Yue, L. & Clapham, D.E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043–1047 (2001).

    Article  CAS  Google Scholar 

  • Ozon, S., Byk, T. & Sobel, A. SCLIP: a novel SCG10-like protein of the stathmin family expressed in the nervous system. J. Neurochem. 70, 2386–2396 (1998).

    Article  CAS  Google Scholar 

  • Gavet, O. et al. The stathmin phosphoprotein family: intracellular localization and effects on the microtubule network. J. Cell. Sci. 111, 3333–3346 (1998).

    CAS  PubMed  Google Scholar 

  • Stein, R., Mori, N., Matthews, K., Lo, L.C. & Anderson, D.J. The NGF-inducible SCG10 mRNA encodes a novel membrane-bound protein present in growth cones and abundant in developing neurons. Neuron 1, 463–476 (1988).

    Article  CAS  Google Scholar 

  • Ozon, S., Maucuer, A. & Sobel, A. The stathmin family—molecular and biological characterization of novel mammalian proteins expressed in the nervous system. Eur. J. Biochem. 248, 794–806 (1997).

    Article  CAS  Google Scholar 

  • Cassimeris, L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr. Opin. Cell Biol. 14, 18–24 (2002).

    Article  CAS  Google Scholar 

  • Antonsson, B. et al. Purification, characterization, and in vitro phosphorylation of the neuron-specific membrane-associated protein SCG10. Protein Expr. Purif. 9, 363–371 (1997).

    Article  CAS  Google Scholar 

  • Lutjens, R. et al. Localization and targeting of SCG10 to the trans-Golgi apparatus and growth cone vesicles. Eur. J. Neurosci. 12, 2224–2234 (2000).

    Article  CAS  Google Scholar 

  • Goshima, Y., Nakamura, F., Strittmatter, P. & Strittmatter, S.M. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376, 509–514 (1995).

    Article  CAS  Google Scholar 

  • Takahashi, T., Nakamura, F., Jin, Z., Kalb, R.G. & Strittmatter, S.M. Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors. Nat. Neurosci. 1, 487–493 (1998).

    Article  CAS  Google Scholar 

  • Belmont, L.D. & Mitchison, T.J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84, 623–631 (1996).

    Article  CAS  Google Scholar 

  • Song, H. & Poo, M. The cell biology of neuronal navigation. Nat. Cell Biol. 3, E81–88 (2001).

    Article  CAS  Google Scholar 

  • Bixby, J.L. & Spitzer, N.C. Early differentiation of vertebrate spinal neurons in the absence of voltage-dependent Ca2+ and Na+ influx. Dev. Biol. 106, 89–96 (1984).

    Article  CAS  Google Scholar 

  • Gu, X. & Spitzer, N.C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995).

    Article  CAS  Google Scholar 

  • Kuhn, T.B., Brown, M.D. & Bamburg, J.R. Rac1-dependent actin filament organization in growth cones is necessary for beta1-integrin-mediated advance but not for growth on poly-D-lysine. J. Neurobiol. 37, 524–540 (1998).

    Article  CAS  Google Scholar 

  • Goslin, K. & Banker, G. Experimental observations on the development of polarity by hippocampal neurons in culture. J. Cell Biol. 108, 1507–1516 (1989).

    Article  CAS  Google Scholar 

  • Lorenz, E. et al. Evidence for direct physical association between a K+ channel (Kir6.2) and an ATP-binding cassette protein (SUR1) which affects cellular distribution and kinetic behavior of an ATP-sensitive K+ channel. Mol. Cell. Biol. 18, 1652–1659 (1998).

    Article  CAS  Google Scholar