nature.com

Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics - Nature Nanotechnology

  • ️Craighead, Harold G.
  • ️Fri Oct 04 2013
  • Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  Google Scholar 

  • Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nature Biotechnol. 28, 1057–1068 (2010).

    Article  CAS  Google Scholar 

  • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  • Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  Google Scholar 

  • Schones, D. & Zhao, K. Genome-wide approaches to studying chromatin modifications. Nature Rev. Genet. 9, 179–191 (2008).

    Article  CAS  Google Scholar 

  • Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Article  CAS  Google Scholar 

  • Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Rev. Genet. 11, 204–220 (2010).

    Article  CAS  Google Scholar 

  • Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  • Cheung, P., Allis, C. D. & Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell 103, 263–271 (2000).

    Article  CAS  Google Scholar 

  • Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  • Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  Google Scholar 

  • Bednar, J. et al. Nucleosomes, linker DNA and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc. Natl Acad. Sci. USA 95, 14173–14178 (1998).

    Article  CAS  Google Scholar 

  • Mohammad, H. P. & Baylin, S. B. Linking cell signaling and the epigenetic machinery. Nature Biotechnol. 28, 1033–1038 (2010).

    Article  CAS  Google Scholar 

  • Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genet. 38, 1348–1354 (2006).

    Article  CAS  Google Scholar 

  • Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nature Genet. 38, 1341–1347 (2006).

    Article  CAS  Google Scholar 

  • Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nature Rev. Genet. 14, 204–220 (2013).

    Article  CAS  Google Scholar 

  • Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  Google Scholar 

  • Zhu, J. et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152, 642–654 (2013).

    Article  CAS  Google Scholar 

  • Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  Google Scholar 

  • Fang, F. et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci. Transl. Med. 3, 75ra25 (2011).

    Article  Google Scholar 

  • Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications — miswritten, misinterpreted and mis-erased in human cancers. Nature Rev. Cancer 10, 457–469 (2010).

    Article  CAS  Google Scholar 

  • Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet. 37, 391–400 (2005).

    Article  CAS  Google Scholar 

  • Fudenberg, G., Getz, G., Meyerson, M. & Mirny, L. High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nature Biotechnol. 29, 1109–1113 (2011).

    Article  CAS  Google Scholar 

  • Gu, H. et al. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nature Methods 7, 133–136 (2010).

    Article  CAS  Google Scholar 

  • Park, P. J. ChIP-Seq: advantages and challenges of a maturing technology. Nature Rev. Genet. 10, 669–680 (2009).

    Article  CAS  Google Scholar 

  • Krueger, F., Kreck, B., Franke, A. & Andrews, S. R. DNA methylome analysis using short bisulfite sequencing data. Nature Methods 9, 145–151 (2012).

    Article  CAS  Google Scholar 

  • Laird, P. W. Principles and challenges of genome-wide DNA methylation analysis. Nature Rev. Genet. 11, 191–203 (2010).

    Article  CAS  Google Scholar 

  • Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  Google Scholar 

  • Pujadas, E. & Feinberg, A. P. Regulated noise in the epigenetic landscape of development and disease. Cell 148, 1123–1131 (2012).

    Article  CAS  Google Scholar 

  • Goren, A. et al. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nature Methods 7, 47–49 (2010).

    Article  CAS  Google Scholar 

  • Stott, S. L. et al. Isolation and characterization of circulating tumor cells from patients with localized metastatic prostate cancer. Sci. Transl. Med. 2, 25ra23 (2010).

    Article  CAS  Google Scholar 

  • Fanelli, M. et al. Pathology tissue-chromatin immunoprecipitation, coupled with high-throughput sequencing, allows the epigenetic profiling of patient samples. Proc. Natl Acad. Sci. USA 107, 21535–21540 (2010).

    Article  CAS  Google Scholar 

  • Quake, S. R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).

    Article  CAS  Google Scholar 

  • Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nature Protoc. 5, 491–502 (2010). This article illustrates different techniques for fabricating various kinds of micro- and nanoscale device that can be used for evaluating different kinds of epigenetic modification.

    Article  CAS  Google Scholar 

  • Craighead, H. Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442, 387–393 (2006).

    Article  CAS  Google Scholar 

  • Liu, Y. et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nature Biotechnol. 31, 142–147 (2013).

    Article  CAS  Google Scholar 

  • Robertson, K. D. DNA methylation and human disease. Nature Rev. Genet. 6, 597–610 (2005).

    Article  CAS  Google Scholar 

  • Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    Article  CAS  Google Scholar 

  • Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  CAS  Google Scholar 

  • Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nature Methods 7, 461–465 (2010). This article describes direct detection of DNA methylation, without bisulphite conversion, by monitoring a single- molecule sequencing reaction within a nanophotonic waveguide.

    Article  CAS  Google Scholar 

  • Song, C. X. et al. Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nature Methods 9, 75–77 (2012).

    Article  CAS  Google Scholar 

  • Fang, G. et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nature Biotechnol. 30, 1232–1239 (2012).

    Article  CAS  Google Scholar 

  • Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    Article  CAS  Google Scholar 

  • Ratel, D., Ravanat, J. L., Berger, F. & Wion, D. N6-methyladenine: the other methylated base of DNA. Bioessays 28, 309–315 (2006).

    Article  CAS  Google Scholar 

  • Austin, R. H., Brody, J. P., Cox, E. C., Duke, T. & Volkmuth, W. Stretch genes. Phys. Today 50, 32–38 (February, 1997).

    Article  CAS  Google Scholar 

  • Bensimon, A. et al. Alignment and sensitive detection of DNA by a moving interface. Science 265, 2096–2098 (1994).

    Article  CAS  Google Scholar 

  • Cerf, A., Alava, T., Barton, R. A. & Craighead, H. G. Transfer-printing of single DNA molecule arrays on graphene for high-resolution electron imaging and analysis. Nano Lett. 11, 4232–4238 (2011).

    Article  CAS  Google Scholar 

  • Streng, D. E., Lim, S. F., Pan, J., Karpusenka, A. & Riehn, R. Stretching chromatin through confinement. Lab Chip 9, 2772–2774 (2009).

    Article  CAS  Google Scholar 

  • Tegenfeldt, J. O. et al. The dynamics of genomic-length DNA molecules in 100-nm channels. Proc. Natl Acad. Sci. USA 101, 10979–10983 (2004).

    Article  CAS  Google Scholar 

  • Lim, S. F. et al. DNA methylation profiling in nanochannels. Biomicrofluidics 5, 034106 (2011).

    Article  CAS  Google Scholar 

  • Cerf, A., Cipriany, B. R., Benitez, J. J. & Craighead, H. G. Single DNA molecule patterning for high-throughput epigenetic mapping. Anal. Chem. 83, 8073–8077 (2011). This article reports a technique to pattern and optically map large-scale arrays of single molecules in an extended form to detect and map DNA cytosine methylation.

    Article  CAS  Google Scholar 

  • Wang, Y., Reinhart, W. F., Tree, D. R. & Dorfman, K. D. Resolution limit for DNA barcodes in the Odijk regime. Biomicrofluidics 6, 014101 (2012).

    Article  CAS  Google Scholar 

  • Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nature Rev. Genet. 9, 465–476 (2008).

    Article  CAS  Google Scholar 

  • Wallace, E. V. B. et al. Identification of epigenetic DNA modifications with a protein nanopore. Chem. Commun. 46, 8195–8197 (2010).

    Article  CAS  Google Scholar 

  • Mirsaidov, U. et al. Nanoelectromechanics of methylated DNA in a synthetic nanopore. Biophys. J. 96, L32–L34 (2009).

    Article  CAS  Google Scholar 

  • Venkatesan, B. M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nature Nanotech. 6, 615–624 (2011).

    Article  CAS  Google Scholar 

  • Wanunu, M. et al. Discrimination of methylcytosine from hydroxmethylcytosine in DNA molecules. J. Am. Chem. Soc. 133, 486–492 (2011). This article describes fabrication and testing of a solid-state nanopore device to differentiate several types of DNA covalent modifications in a label-free, rapid manner.

    Article  CAS  Google Scholar 

  • Shim, J. et al. Detection and quantification of methylation in DNA using solid-state nanopores. Sci. Rep. 3, 1389 (2013).

    Article  CAS  Google Scholar 

  • Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-angstrom precision. Nature Biotechnol. 30, 344–348 (2012).

    Article  CAS  Google Scholar 

  • Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nature Biotechnol. 30, 349–353 (2012).

    Article  CAS  Google Scholar 

  • Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  • Goren, R. B. et al. High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein–DNA interactions and epigenomic states. Nature Protoc. 8, 539–554 (2013).

    Article  CAS  Google Scholar 

  • Wu, A. R. et al. Automated microfluidic chromatin immunoprecipitation from 2,000 cells. Lab Chip 9, 1365–1370 (2009).

    Article  CAS  Google Scholar 

  • Geng, T. et al. Histone modification analysis by chromatin immunoprecipitation from a low number of cells on a microfluidic platform. Lab Chip 11, 2842–2848 (2011).

    Article  CAS  Google Scholar 

  • Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    Article  CAS  Google Scholar 

  • Tseng, Q., Lomonosov, A. M., Furlong, E. E. & Merten, C. A. Fragmentation of DNA in a sub-microliter microfluidic sonication device. Lab Chip 12, 4677–4682 (2012).

    Article  CAS  Google Scholar 

  • Shui, L., Bomer, J. G., Jin, M., Carlen, E. T. & van den Berg, A. Microfluidic DNA fragmentation for on-chip genomic analysis. Nanotechnology 22, 494013 (2011).

    Article  CAS  Google Scholar 

  • Wu, A. R. et al. High throughput automated chromatin immunoprecipitation as a platform for drug screening and antibody validation. Lab Chip 12, 2190–2198 (2012). This article describes construction of an automated microfluidic device to carry out ChIP from small cell numbers and with high reproducibility in a fast manner (hours).

    Article  CAS  Google Scholar 

  • Cipriany, B. R. et al. Single molecule epigenetic analysis in a nanofluidic channel. Anal. Chem. 82, 2480–2487 (2010).

    Article  CAS  Google Scholar 

  • Matsuoka, T. et al. Nanoscale squeezing in elastomeric nanochannels for single chromatin linearization. Nano Lett. 12, 6480–6484 (2012).

    Article  CAS  Google Scholar 

  • Cerf, A., Tian, H. C. & Craighead, H. G. Ordered arrays of native chromatin molecules for high-resolution imaging and analysis. ACS Nano 6, 7928–7934 (2012).

    Article  CAS  Google Scholar 

  • Fazio, T., Visnapuu, M. L., Wind, S. & Greene, E. C. DNA curtains and nanoscale curtain rods: high-throughput tools for single molecule imaging. Langmuir 24, 10524–10531 (2008).

    Article  CAS  Google Scholar 

  • Visnapuu, M. L. & Greene, E. C. Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition. Nature Struct. Mol. Biol. 16, 1056–1062 (2009).

    Article  CAS  Google Scholar 

  • Wang, Y. M. et al. Single-molecule studies of repressor-DNA interactions show long-range interactions. Proc. Natl Acad. Sci. USA 102, 9796–9801 (2005).

    Article  CAS  Google Scholar 

  • Wang, Y. M., Tegenfeldt, J. O., Sturm, J. & Austin, R. H. Long-range interactions between transcription factors. Nanotechnology 16, 1993–1999 (2005).

    Article  CAS  Google Scholar 

  • Murphy, P. M. et al. Single-molecule analysis of combinatorial epigenomic states in normal and tumor cells. Proc. Natl Acad. Sci. USA 110, 7772–7777 (2013).

    Article  CAS  Google Scholar 

  • Marie, R. et al. Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. Proc. Natl Acad. Sci. USA 110, 4893–4898 (2013).

    Article  CAS  Google Scholar 

  • Cipriany, B. R. et al. Real-time analysis and selection of methylated DNA by fluorescence-activated single molecule sorting in a nanofluidic channel. Proc. Natl Acad. Sci. USA 109, 8477–8482 (2012). This article reports the fabrication of a nanofluidic device that can identify different kinds of epigenetic modification on single chromatin fragments and sort them into different compartments based on the bound modifications.

    Article  CAS  Google Scholar 

  • Yamamoto, T. & Fujii, T. Nanofluidic single-molecule sorting of DNA: a new concept in separation and analysis of biomolecules towards ultimate level of performance. Nanotechnology 21, 395502 (2010).

    Article  CAS  Google Scholar 

  • Soni, G. V. & Dekker, C. Detection of nucleosomal substructures using solid-state nanopores. Nano Lett. 12, 3180–3186 (2012).

    Article  CAS  Google Scholar 

  • Kowalcyzk, S. W., Hall, A. R. & Dekker, C. Detection of local protein structures along DNA using solid-state nanopores. Nano Lett. 10, 324–328 (2010).

    Article  CAS  Google Scholar 

  • Hornblower, B. et al. Single-molecule analysis of DNA–protein complexes using nanopores. Nature Methods 4, 315–317 (2007).

    Article  CAS  Google Scholar 

  • Venkatesan, B. et al. Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA–protein complexes. ACS Nano 6, 441–450 (2012).

    Article  CAS  Google Scholar 

  • Raillon, C. et al. Nanopore detection of single molecule RNAP–DNA transcription complex. Nano Lett. 12, 1157–1164 (2012).

    Article  CAS  Google Scholar 

  • Struhl, K. & Segal, E. Determinants of nucleosome positioning. Nature Struct. Mol. Biol. 20, 267–273 (2013).

    Article  CAS  Google Scholar 

  • Plesa, C. et al. Fast translocation of proteins through solid-state nanopores. Nano Lett. 13, 658–663 (2013).

    Article  CAS  Google Scholar 

  • Garaj, S. et al. Graphene as a subnanometre trans-electrode. Nature 467, 190–193 (2010).

    Article  CAS  Google Scholar 

  • Sen, Y. H., Jain, T., Aguilar, C. A. & Karnik, R. Enhanced discrimination of DNA molecules in nanofluidic channels through multiple measurements. Lab Chip 12, 1094–1101 (2012).

    Article  CAS  Google Scholar 

  • Gershow, M. & Golovchenko, J. A. Recapturing and trapping single molecules with a solid-state nanopore. Nature Nanotech. 2, 775–779 (2007).

    Article  CAS  Google Scholar 

  • Winters-Hilt, S. et al. Highly accurate classification of Watson–Crick basepairs on termini of single DNA molecules. Biophys. J. 84, 967–976 (2003).

    Article  CAS  Google Scholar 

  • Raillon, C., Granjon, P., Graf, M., Steinbock, L. J. & Radenovic, A. Fast and automatic processing of multi-level events in nanopore translocation experiments. Nanoscale 4, 4916–4924 (2012).

    Article  CAS  Google Scholar 

  • Pedone, D., Firnkes, M. & Rant, U. Data analysis of translocation events in nanopore experiments. Anal. Chem. 81, 9689–9694 (2009).

    Article  CAS  Google Scholar 

  • Gomez, D., Shankman, L. S., Nguyen, A. T. & Owens, G. K. Detection of histone modifications at specific gene loci in single cells in histological sections. Nature Methods 10, 171–177 (2013).

    Article  CAS  Google Scholar 

  • Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods 5, 491–505 (2008).

    Article  CAS  Google Scholar 

  • Killian, J. L., Li, M., Sheinin, M. Y. & Wang, M. D. Recent advances in single molecule studies of nucleosomes. Curr. Opin. Struct. Biol. 22, 80–87 (2012).

    Article  CAS  Google Scholar 

  • Simon, M. et al. Histone fold modifications control nucleosome unwrapping and disassembly. Proc. Natl Acad. Sci. USA 108, 12711–12716 (2011).

    Article  CAS  Google Scholar 

  • Cairns, B. R. Chromatin remodeling: insights and intrigue from single molecule studies. Nature Struct. Mol. Biol. 14, 989–996 (2007).

    Article  CAS  Google Scholar 

  • Dulin, D., Lipfert, J., Moolman, C. & Dekker, N. Studying genomic processes at the single-molecule level: introducing the tools and applications. Nature Rev. Genet. 14, 9–22 (2013).

    Article  CAS  Google Scholar 

  • Fazal, F. M. & Block, S. M. Optical tweezers study life under tension. Nature Photon. 5, 318–321 (2011).

    Article  CAS  Google Scholar 

  • Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl Acad. Sci. USA. 97, 127–132 (2000).

    Article  CAS  Google Scholar 

  • Bennink, M. L. et al. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nature Struct. Mol. Biol. 8, 606–610 (2001).

    Article  CAS  Google Scholar 

  • Hall, M. A. et al. High resolution dynamic mapping of histone–DNA interactions in a nucleosome. Nature Struct. Mol. Biol. 16, 124–129 (2009). This article describes the use of optical tweezers to generate a comprehensive map of histone–DNA interactions on a single nucleosome and shows a new periodicity in contact strength with several broad regions of strong contact.

    Article  CAS  Google Scholar 

  • Mihardja, S., Spakowitz, A. J., Zhang, Y. & Bustamante, C. Effect of force on mononucleosomal dynamics. Proc. Natl Acad. Sci. USA 103, 15871–15876 (2006).

    Article  CAS  Google Scholar 

  • Jin, J. et al. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier. Nature Struct. Mol. Biol. 17, 745–752 (2010).

    Article  CAS  Google Scholar 

  • Shundrovsky, A., Smith, C. L., Lis, J. T., Peterson, C. L. & Wang, M. D. Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules. Nature Struct. Mol. Biol. 13, 549–554 (2006).

    Article  CAS  Google Scholar 

  • Bintu, L. et al. Nucleosomal elements that control the topography of the barrier to transcription. Cell 151, 738–749 (2012).

    Article  CAS  Google Scholar 

  • Kruithof, M. et al. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nature Struct. Mol. Biol. 16, 534–540 (2009). This article reports the use of magnetic tweezers to pull on a single heterochromatin fibre and determines that the molecule behaved in a similar way to a Hookian spring with low compliance, which indicates the DNA can be kept both highly compacted and accessible.

    Article  CAS  Google Scholar 

  • Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  Google Scholar 

  • Das, C., Tyler, J. K. & Churchill, M. E. The histone shuffle: histone chaperones in an energetic dance. Trends Biochem. Sci. 35, 476–489 (2010).

    Article  CAS  Google Scholar 

  • Vlijm, R., Smitshuijzen, J. S. J., Lusser, A. & Dekker, C. NAP1-assisted nucleosome assembly on DNA measured in real time by single-molecule magnetic tweezers. PLoS ONE 7, e46306 (2012).

    Article  CAS  Google Scholar 

  • Hawkins, R. D., Hon, G. C. & Ren, B. Next-generation genomics: an integrative approach. Nature Rev. Genet. 11, 476–486 (2010). This article describes strategies to analyse, visualize, manipulate and interpret data for different types of genomics experiment in an integrated way.

    Article  CAS  Google Scholar 

  • Lenshof, A. & Laurell, T. Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39, 1203–1217 (2010).

    Article  CAS  Google Scholar 

  • Rasmussen, K. H. et al. A device for extraction, manipulation and stretching of DNA from single human chromosomes. Lab Chip 11, 1431–1433 (2011).

    Article  CAS  Google Scholar 

  • Fan, H. C., Wang, J., Potanina, A. & Quake, S. R. Whole-genome molecular haplotyping of single cells. Nature Biotechnol. 29, 51–57 (2011). This article describes a microfluidic device capable of trapping a single cell and isolating each chromosome in a small chamber for haplotyping.

    Article  CAS  Google Scholar 

  • Benitez, J. J. et al. Microfluidic extraction, stretching and analysis of human chromosomal DNA from single cells. Lab Chip 12, 4848–4854 (2012).

    Article  CAS  Google Scholar 

  • Pelletier, J. et al. Physical manipulation of the Escherichia coli chromosome reveals its soft nature. Proc. Natl Acad. Sci. USA 109, E2649–E2656 (2012).

    Article  CAS  Google Scholar 

  • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  • Ramakrishna, R. K. et al. Relationship between nucleosome positioning and DNA methylation. Nature 466, 388–392 (2010).

    Article  CAS  Google Scholar 

  • Cedar, H. & Bergman, Y. Linking DNA methylation and histone modifications: patterns and paradigms. Nature Rev. Genet. 10, 295–304 (2009).

    Article  CAS  Google Scholar 

  • Brinkman, A. B. et al. Sequential ChIP–bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA-methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    Article  CAS  Google Scholar 

  • Gifford, C. A. et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153, 1–15 (2013).

    Article  CAS  Google Scholar 

  • Haynes, K. A. & Silver, P. A. Synthetic reversal of epigenetic silencing. J. Biol. Chem. 286, 27176–27182 (2011).

    Article  CAS  Google Scholar 

  • Hamon, M. A. & Cossart, P. Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe 4, 100–109 (2008).

    Article  CAS  Google Scholar 

  • Maunakea, A. K., Chepelev, I. & Zhao, K. Epigenome mapping in normal and disease states. Circ. Res. 107, 327–339 (2010).

    Article  CAS  Google Scholar 

  • Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nature Rev. Genet. 8, 253–262 (2007).

    Article  CAS  Google Scholar