nature.com

Space-division multiplexing in optical fibres - Nature Photonics

  • ️Nelson, L. E.
  • ️Mon Apr 29 2013
  • Iano, S., Sato, T., Sentsui, S., Kuroha, T. & Nishimura, Y. in Proc. Opt. Fiber Commun. Conf. paper WB1 (OSA, 1979).

    Google Scholar 

  • Berdagué, S. & Facq, P. Mode division multiplexing in optical fibers. App. Opt. 21, 1950–1955 (1982).

    Article  ADS  Google Scholar 

  • Sillard, P. New fibers for ultra-high capacity transport. Opt. Fiber Technol. 17, 495–502 (2011).

    Article  ADS  Google Scholar 

  • Roberts, P. et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13, 236–244 (2005).

    Article  ADS  Google Scholar 

  • Wheeler, N. V. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5A.2 (OSA, 2012).

    Google Scholar 

  • Bouwmans, G. et al. Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm. Opt. Express 13, 8452–8459 (2005).

    Article  ADS  Google Scholar 

  • Johnson, S. G. et al. Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Opt. Express 9, 748–779 (2001).

    Article  ADS  Google Scholar 

  • Ramachandran, S. et al. High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber. Opt. Lett. 30, 3225–3227 (2005).

    Article  ADS  Google Scholar 

  • Nicholson, J. W., Yablon, A. D., Ramachandran, S. & Ghalmi, S. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. Opt. Express 16, 7233–7243 (2008).

    Article  ADS  Google Scholar 

  • DiGiovanni, D. J. & Stentz, A. J. Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices. US Patent 5,864,644 (1999).

  • Richardson, D. J., Nilsson, J. & Clarkson, W. A. High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 27, 63–92 (2010).

    Article  Google Scholar 

  • Leon-Saval, S. G., Birks, T. A., Bland-Hawthorn, J. & Englund, M. Multimode fiber devices with single-mode performance. Opt. Lett. 30, 2545–2547 (2005).

    Article  ADS  Google Scholar 

  • Reichenbach, K. L. & Xu, C. Numerical analysis of light propagation in image fibers or coherent fiber bundles. Opt. Express 15, 2151–2165 (2007).

    Article  ADS  Google Scholar 

  • Essiambre, R. J. & Tkach, R. W. Capacity trends and limits of optical communication networks. Proc. IEEE 100, 1035–1055 (2012).

    Article  Google Scholar 

  • Mitra, P. P. & Stark, J. B. Nonlinear limits to the information capacity of optical fibre communications. Nature 411, 1027–1030 (2001).

    Article  ADS  Google Scholar 

  • Winzer, P. J. Energy-efficient optical transport capacity scaling through spatial multiplexing. IEEE Photon. Tech. Lett. 23, 851–853 (2011).

    Article  ADS  Google Scholar 

  • Morioka, T. et al. Enhancing optical communications with brand new fibers. IEEE Com. Mag. 50, S31–S42 (2012).

    Article  Google Scholar 

  • Koshiba, M., Saitoh, K. & Kokubun, Y. Heterogeneous multi-core fibers: proposal and design principles. IEICE Electron. Express 6, 98–103 (2009).

    Article  Google Scholar 

  • Fini, J. M., Zhu, B., Taunay, T. F., Yan, M. F. & Abedin, K. S. Crosstalk in multicore fibers with randomness: gradual drift vs. short-length variations. Opt. Express, 20, 949–959 (2012).

    Article  ADS  Google Scholar 

  • Winzer, P. J., Gnauck, A. H., Konczykowska, A., Jorge, F. & Dupuy, J. Y. in Proc. Euro. Conf. Opt. Commun. paper Tu.5.B.7 (IEEE, 2011).

    Google Scholar 

  • Hayashi, T., Taru, T, Shimakawa, O., Sasaki, T. & Sasaoka, E. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Opt. Express 19, 16576–16592 (2011).

    Article  ADS  Google Scholar 

  • Takara, H. et al. in Proc. Euro. Conf. Opt. Commun. paper Th3.C.1 (IEEE, 2012).

    Google Scholar 

  • Sakaguchi, J. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5C (OSA, 2012).

    Google Scholar 

  • Foschini, G. J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech. J. 1, 41–59 (1996).

    Article  Google Scholar 

  • Savory, S. J. Digital coherent optical receivers: algorithms and subsystems. IEEE J. Sel. Top. Quant. Electron. 16, 1164–1179 (2010).

    Article  ADS  Google Scholar 

  • Randel, S. et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization. Opt. Express 19, 16697–16707 (2011).

    Article  ADS  Google Scholar 

  • Inan, B. et al. DSP complexity of mode-division multiplexed receivers. Opt. Express 20, 10859–10869 (2012).

    Article  ADS  Google Scholar 

  • Bai, N. & Li, G. Adaptive frequency domain equalization for mode-division multiplexed transmission. IEEE Photon. Tech. Lett. 24, 1918–1921 (2012).

    Article  ADS  Google Scholar 

  • Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photon. 6, 488–496 (2012).

    Article  ADS  Google Scholar 

  • Bozinovic, N. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.C.6 (IEEE, 2012).

    Google Scholar 

  • Gruner-Nielsen, L. et al. Few mode transmission fiber with low DGD, low mode coupling, and low loss. IEEE J. Lightwave Tech. 30, 3693–3698 (2012).

    Article  ADS  Google Scholar 

  • Bai, N. et al. Mode-division multiplexed transmission with inline few mode fiber amplifier. Opt. Express 20, 2668–2680 (2012).

    Article  ADS  Google Scholar 

  • Sakamoto, T., Mori, T., Yamamoto, T. & Tomita S. in Proc. Opt. Fiber Commun. Conf. paper OM2D (OSA, 2012).

    Google Scholar 

  • Sleiffer, V. A. J. M. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.C.4 (IEEE, 2012).

    Google Scholar 

  • Randel, S. et al. in Proc. National Fiber Opt. Eng. Conf. paper PDP5C.5 (OSA, 2012).

    Google Scholar 

  • Ryf, R. et al. in Proc. Frontiers in Optics paper FW6C.4. (OSA, 2012).

    Google Scholar 

  • Koebele, C. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.C.3 (IEEE, 2011).

    Google Scholar 

  • Ho, K. P. & Kahn, J. M. Statistics of group delays in multimode fiber with strong mode coupling. IEEE J. Lightwave Tech. 29, 3119–3128 (2011).

    Article  ADS  Google Scholar 

  • Ho, K. P. & Kahn, J. M. Delay-spread distribution for multimode fiber with strong mode coupling. IEEE Photon. Tech. Lett. 24, 1906–1909 (2012).

    Article  ADS  Google Scholar 

  • Kahn, J. M. & Ho, K. P. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series paper TuC3.4 (IEEE, 2012).

    Google Scholar 

  • Lobato, A. et al. Impact of mode coupling on the mode-dependent loss tolerance in few-mode fiber transmission. Opt. Express 20, 29776–29783 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  • Koebele, C., Salsi, M., Charlet, G. & Bigo, S. Nonlinear effects in mode-division-multiplexed transmission over few-mode optical fiber. IEEE Photon. Tech. Lett. 23, 1316–1318 (2011).

    Article  ADS  Google Scholar 

  • Rademacher, G., Warm, S., Petermann, K. Analytical description of cross-modal nonlinear interaction in mode multiplexed multimode fibers. IEEE Photon. Tech. Lett. 24, 1929–1931 (2012).

    Article  ADS  Google Scholar 

  • Mumtaz, S., Essiambre, R. J. & Agrawal, G. P. Nonlinear propagation in multimode and multicore fibers: generalization of the Manakov equations. IEEE J. Lightwave Tech. 31, 398–406 (2013).

    Article  ADS  Google Scholar 

  • Poletti, F. & Horak, P. Description of ultrashort pulse propagation in multimode optical fibers. J. Opt. Soc. Am. B 25, 1645–1654 (2008).

    Article  ADS  Google Scholar 

  • Essiambre, R. J. et al. Experimental investigation of inter-modal four-wave mixing in multimode fibers. IEEE Photon. Tech. Lett. 25, 539–542 (2013).

    Article  ADS  Google Scholar 

  • Petrovich, M. N. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.A.5 (IEEE, 2012).

    Google Scholar 

  • MacSuibhne, N. et al. in Proc. Euro. Conf. Opt. Commun. Th.3.A.3 (IEEE, 2012).

    Google Scholar 

  • Ryf, R. et al. MIMO-based crosstalk suppression in spatially multiplexed 3 × 56-Gb/s PDM-QPSK signals for strongly coupled three-core fiber. IEEE Photon. Tech. Lett. 23, 1469–1471 (2011).

    Article  ADS  Google Scholar 

  • Ryf, R. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.C.1 (IEEE, 2011).

    Google Scholar 

  • Mumtaz, S., Essiambre, R. J. & Agrawal, G. P. Reduction of nonlinear penalties due to linear coupling in multicore optical fibers. IEEE Photon. Tech. Lett. 24, 1574–1576 (2012).

    Article  ADS  Google Scholar 

  • Bulow, H., Al-Hashimi, H. & Schmauss, B. in Proc. Opto-Electron. Commun. Conf. 562–563 (IEEE, 2012).

    Google Scholar 

  • Fontaine, N. K., Ryf, R., Leon-Saval, S. G. & Bland-Hawthorn, J. in Proc. Euro. Conf. Opt. Commun. paper Th.2.D (IEEE, 2012).

    Google Scholar 

  • Ryf, R., Fontaine, N. K. & Essiambre, R. J. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2012).

    Google Scholar 

  • Carpenter, J. & Wilkinson, T. D. All optical mode-multiplexing using holography and multimode fiber couplers. IEEE J. Lightwave Tech. 30, 1978–1984 (2012).

    Article  ADS  Google Scholar 

  • Sperti, D. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.12.B.2 (IEEE, 2011).

    Google Scholar 

  • Krummrich, P. M. Optical amplification and optical filter based signal processing for cost and energy efficient spatial multiplexing. Opt. Express 19, 16636–16652 (2011).

    Article  ADS  Google Scholar 

  • Jung, Y. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.K.4 (IEEE, 2011).

    Google Scholar 

  • Le Cocq, G. et al. Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing. Opt. Express 20, 27051–27061 (2012).

    Article  ADS  Google Scholar 

  • Feuer, M. D. et al. Joint digital signal processing receivers for spatial superchannels. IEEE Photon. Tech. Lett. 24, 1957–1959 (2012).

    Article  ADS  Google Scholar 

  • Chen, X., Li, A., Ye, J., Al Amin, A. & Shieh, W. Reception of mode-division multiplexed superchannel via few-mode compatible optical add/drop multiplexer. Opt. Express 20, 14302–14307 (2012).

    Article  ADS  Google Scholar 

  • Cvijetic, M., Djordjevic, I. B. & Cvijetic, N. Dynamic multidimensional optical networking based on spatial and spectral processing. Opt. Express 20, 9144–9150 (2012).

    Article  ADS  Google Scholar 

  • Guan, K., Winzer, P. & Soljanin, E. in Proc. Euro. Conf. Opt. Commun. paper Tu.3.C.4 (IEEE, 2012).

    Google Scholar 

  • Klaus, W. et al. Free-space coupling optics for multi-core fibers. IEEE Photon. Tech. Lett. 24, 1902–1905 (2012).

    Article  ADS  Google Scholar 

  • Zhu, B. et al. 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber. Opt. Express 19, 16665–16671 (2011).

    Article  ADS  Google Scholar 

  • Tottori, Y., Kobayashi, T. & Watanabe, M. Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers. IEEE Photon. Tech. Lett. 24, 1926–1928 (2012).

    Article  ADS  Google Scholar 

  • Watanabe, K., Saito, T., Imamura, K. & Shiino, M. in Proc. Opto-Electron. Commun. Conf. (IEEE, 2012).

    Google Scholar 

  • Louchet, H. et al. in Proc. Euro. Conf. Opt. Commun. paper We.10.P1.74 (IEEE, 2011).

    Google Scholar 

  • Abedin, K. S. et al. Cladding-pumped erbium-doped multicore fiber amplifier. Opt. Express 20, 20191–20200 (2012).

    Article  ADS  Google Scholar 

  • Mimura, Y. et al. in Proc. Euro. Conf. Opt. Commun. paper Tu.4.F (IEEE, 2012).

    Google Scholar 

  • Lee, B. G. et al. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2010).

    Google Scholar 

  • Lee, B. G. et al. End-to-end multicore multimode fiber optic link operating up to 120 Gb/s. IEEE J. Lightwave Tech. 30, 886–892 (2012).

    Article  ADS  Google Scholar 

  • Doerr, C. R. & Taunay, T. F. Silicon photonics core-, wavelength-, and polarization-diversity receiver. IEEE Photon. Tech. Lett. 23, 597–599 (2011).

    Article  ADS  Google Scholar 

  • Pinguet, T. et al. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2012).

    Google Scholar 

  • Su, T. et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Opt. Express 20, 9396–9402 (2012).

    Article  ADS  Google Scholar 

  • Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

    Article  ADS  Google Scholar 

  • Koonen, A. M. J., Chen, H. S., van den Boom, H. P. A. & Raz, O. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2012).

    Google Scholar 

  • Suzuki, K., Ono, H., Mizuno, T., Hashizume, Y. & Takahashi, T. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2012).

    Google Scholar 

  • Le Noane, G., Boscher, D., Grosso, P., Bizeul, J. C. & Botton, C. in Proc. Int. Wire Cable Symp. 203–209 (IWCS, 1994).

    Google Scholar 

  • Rosinski, B., Chi, J. W., Grosso, P. & Bihan, J. L. Multichannel transmission of a multicore fiber coupled with vertical-cavity surface-emitting lasers. IEEE J. Lightwave Tech. 17, 807–810 (1999).

    Article  ADS  Google Scholar 

  • Zhu, B. et al. Seven-core multicore fiber transmissions for passive optical network. Opt. Express 18, 11117–11122 (2010).

    Article  ADS  Google Scholar 

  • Zhu, B. et al. 70-Gb/s multicore multimode fiber transmissions for optical data links. IEEE Photon. Tech. Lett. 22, 1647–1649 (2010).

    Google Scholar 

  • Zhu, B. et al. in Proc. Opt. Fiber Commun. Conf. paper PDPB7 (OSA, 2011).

    Google Scholar 

  • Sakaguchi, J. et al. in Proc. Opt. Fiber Commun. Conf. paper PDPB6 (OSA, 2011).

    Google Scholar 

  • Zhu, B. et al. 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber. Opt. Express 19, 16665–16671 (2011).

    Article  ADS  Google Scholar 

  • Chandrasekhar, S. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.C.4. (IEEE, 2011).

    Google Scholar 

  • Liu, X. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.B.1 (IEEE, 2011).

    Google Scholar 

  • Gnauck, A. H. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.2.C.2 (IEEE, 2012).

    Google Scholar 

  • Takahashi, H. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.C.3 (IEEE, 2012).

    Google Scholar 

  • Stuart, H. R. Dispersive multiplexing in multimode optical fiber. Science 289, 281–283 (2000).

    Article  ADS  Google Scholar 

  • Shah, A. R. et al. Coherent optical MIMO (COMIMO). IEEE J. Lightwave Tech. 23, 2410–2419 (2005).

    Article  ADS  Google Scholar 

  • Thomsen, B. C. in Proc. Opt. Fiber Commun. Conf. paper OThM6 (OSA, 2012).

    Google Scholar 

  • Franz, B., Suikat, D., Dischler, R., Buchali, F. & Buelow, H. in Proc. Euro. Conf. Opt. Commun. paper Tu3C4 (IEEE, 2010).

    Google Scholar 

  • Winzer, P. J. & Foschini, G. J. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. Opt. Express 19, 16680–16696 (2011).

    Article  ADS  Google Scholar 

  • Li, A., Al Amin, A., Chen, X. & Shieh, W. in Proc. Opt. Fiber Commun. Conf. paper PDPB8 (OSA, 2011).

    Google Scholar 

  • Salsi, M. et al. in Proc. Opt. Fiber Commun. Conf. paper PDPB9 (OSA, 2011).

    Google Scholar 

  • Ryf, R. et al. in Proc. Opt. Fiber Commun. Conf. paper PDPB10 (OSA, 2011).

    Google Scholar 

  • Ryf, R. et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing. IEEE J. Lightwave Tech. 30, 521–531 (2012).

    Article  ADS  Google Scholar 

  • Ip, E. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.C.2 (IEEE, 2011).

    Google Scholar 

  • Ip, E. et al. in Proc. Opt. Fiber Commun. Conf. paper OTu2C.4 (OSA, 2012).

    Google Scholar 

  • Ryf, R. et al. Combined wavelength- and mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span. IEEE Photon. Tech. Lett. 24, 1965–1968 (2012).

    Article  ADS  Google Scholar 

  • Sleiffer, V. A. J. M. et al. 73.7 Tb/s (96×3×256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA. Opt. Express 20, B428–B438 (2012).

    Article  Google Scholar 

  • Randel, S. et al. in Proc. Euro. Conf. Opt. Commun. paper Tu.5.B.1 (IEEE, 2011).

    Google Scholar 

  • Ryf, R. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5C.2 (OSA, 2012).

    Google Scholar 

  • Xia, C. et al. Hole-assisted few-mode multicore fiber for high-density space-division multiplexing. IEEE Photon. Tech. Lett. 24, 1914–1916 (2012).

    Article  ADS  Google Scholar 

  • Takenaga, K. et al. in Proc. IEEE Summer Topical Meeting on SDM paper TuC1.2 (IEEE, 2012).

    Google Scholar 

  • Qian, D. et al. in Proc. Frontiers in Optics paper FW6C.3 (OSA, 2012).

    Google Scholar 

  • Amaya, N. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.D.3 (IEEE, 2012).

    Google Scholar 

  • Feuer, M. D. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5B.8 (OSA, 2013).

    Google Scholar 

  • Jung, Y. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5A.3 (OSA, 2013).

    Google Scholar 

  • Ryf, R. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5A.1 (OSA, 2013).

    Google Scholar 

  • Ip, E. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5A.2 (OSA, 2013).

    Google Scholar