nature.com

Identifying ChIP-seq enrichment using MACS - Nature Protocols

  • ️Liu, Xiaole Shirley
  • ️Thu Aug 30 2012
  • Mardis, E.R. ChIP-seq: welcome to the new frontier. Nat. Methods 4, 613–614 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Park, P.J. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–680 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Johnson, D.S., Mortazavi, A., Myers, R.M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Dohm, J.C., Lottaz, C., Borodina, T. & Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rozowsky, J. et al. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat. Biotech. 27, 66–75 (2009).

    Article  CAS  Google Scholar 

  • Vega, V.B., Cheung, E., Palanisamy, N. & Sung, W.-K. Inherent signals in sequencing-based chromatin-immunoprecipitation control libraries. PLoS ONE 4, e5241 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, E.T., Pott, S. & Huss, M. Q&A: ChIP-seq technologies and the study of gene regulation. BMC Biol. 8, 56 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teytelman, L. et al. Impact of chromatin structures on DNA processing for genomic analyses. PLoS ONE 4, e6700 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nix, D.A., Courdy, S.J. & Boucher, K.M. Empirical methods for controlling false positives and estimating confidence in ChIP-seq peaks. BMC Bioinformatics 9, 523 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137–R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tavares, L. et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148, 664–678 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulitsky, I., Shkumatava, A., Jan, C.H., Sive, H. & Bartel, D.P. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147, 1537–1550 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He, H.H. et al. Nucleosome dynamics define transcriptional enhancers. Nat. Genet. 42, 343–347 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng, W., Zhao, H., Mancera, E., Steinmetz, L.M. & Snyder, M. Genetic analysis of variation in transcription factor binding in yeast. Nature 464, 1187–1191 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noordermeer, D. et al. The dynamic architecture of Hox gene clusters. Science 334, 222–225 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Welboren, W.-J. et al. ChIP-seq of ERα and RNA polymerase II defines genes differentially responding to ligands. EMBO J. 28, 1418–1428 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Liu, T. et al. Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol. 12, R83 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jothi, R., Cuddapah, S., Barski, A., Cui, K. & Zhao, K. Genome-wide identification of in vivo protein–DNA binding sites from ChIP-seq data. Nucleic Acids Res. 36, 5221–5231 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji, H. et al. An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat. Biotech. 26, 1293–1300 (2008).

    Article  CAS  Google Scholar 

  • Zang, C. et al. A clustering approach for identification of enriched domains from histone modification ChIP-seq data. Bioinformatics 25, 1952–1958 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fejes, A.P. et al. FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics 24, 1729–1730 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valouev, A. et al. Genome-wide analysis of transcription factor binding sites based on ChIP-seq data. Nat. Methods 5, 829–834 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laajala, T.D. et al. A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments. BMC Genomics 10, 618 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilbanks, E.G. & Facciotti, M.T. Evaluation of algorithm performance in ChIP-seq peak detection. PLoS ONE 5, e11471 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pepke, S., Wold, B. & Mortazavi, A. Computation for ChIP-seq and RNA-seq studies. Nat. Methods 6, S22–S32 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barski, A. & Zhao, K. Genomic location analysis by ChIP-seq. J. Cell Biochem. 107, 11–18 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Malone, B.M., Tan, F., Bridges, S.M. & Peng, Z. Comparison of four ChIP-seq analytical algorithms using rice endosperm H3K27 trimethylation profiling data. PLoS ONE 6, e25260 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, Y. et al. Systematic evaluation of factors influencing ChIP-seq fidelity. Nat. Methods 9, 609–614 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stitzel, M.L. et al. Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab. 12, 443–455 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sati, S. et al. High resolution methylome map of rat indicates role of intragenic DNA methylation in identification of coding region. PLoS ONE 7, e31621 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, N. et al. Whole genome DNA methylation analysis based on high throughput sequencing technology. Methods 52, 203–212 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salmon-Divon, M., Dvinge, H., Tammoja, K. & Bertone, P. PeakAnalyzer: genome-wide annotation of chromatin binding and modification loci. BMC Bioinformatics 11, 415 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotech. 29, 24–26 (2011).

    Article  CAS  Google Scholar 

  • Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicol, J.W., Helt, G.A., Blanchard, S.G. Jr ., Raja, A. & Loraine, A.E. The integrated genome browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25, 2730–2731 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar