nature.com

Mitochondrial tumour suppressors: a genetic and biochemical update - Nature Reviews Cancer

  • ️Tomlinson, Ian P. M.
  • ️Tue Nov 01 2005
  • Warburg, O., Wind, F. & Neglers, E. in Metabolism of Tumours (ed. Warburg, O.) 254–270 (Constable & Co., London, 1930).

    Google Scholar 

  • Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  Google Scholar 

  • Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004).

    CAS  Google Scholar 

  • Carew, J. S. & Huang, P. Mitochondrial defects in cancer. Mol. Cancer 1, 9 (2002).

    PubMed  PubMed Central  Google Scholar 

  • Polyak, K. et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genet. 20, 291–293 (1998). This work showed for the first time that the majority of colorectal cancer cells contain somatic and mostly homoplasmic mutations in their mtDNA.

    CAS  PubMed  Google Scholar 

  • Coller, H. A. et al. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nature Genet. 28, 147–150 (2001).

    CAS  PubMed  Google Scholar 

  • Petros, J. A. et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl Acad. Sci. USA 102, 719–724 (2005).

    CAS  PubMed  Google Scholar 

  • Shidara, Y. et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res. 65, 1655–1663 (2005).

    CAS  PubMed  Google Scholar 

  • Yankovskaya, V. et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299, 700–704 (2003). A comprehensive study of the E. coli SDH homologue structure and function. Based on the electron distribution in redox centres, this work makes important analogies to the structure and function of human SDH, and discusses the potential role of several SDH mutations in ROS generation.

    CAS  PubMed  Google Scholar 

  • Astuti, D. et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 69, 49–54 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baysal, B. E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000). The first discovery of a mitochondrial tumour-suppressor gene in HPGL.

    CAS  PubMed  Google Scholar 

  • Niemann, S. & Muller, U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nature Genet. 26, 268–270 (2000).

    CAS  PubMed  Google Scholar 

  • Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genet. 30, 406–410 (2002). References 10–13 were the first studies to characterize SDHB, SDHD, SDHC and FH as tumour suppressors in the hereditary syndromes PGL4, PGL1, PGL3 and HLRCC, respectively.

    CAS  PubMed  Google Scholar 

  • Launonen, V. et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc. Natl Acad. Sci. USA 98, 3387–3392 (2001).

    CAS  PubMed  Google Scholar 

  • Baysal, B. E. On the association of succinate dehydrogenase mutations with hereditary paraganglioma. Trends Endocrinol. Metab. 14, 453–459 (2003).

    CAS  PubMed  Google Scholar 

  • Eng, C., Kiuru, M., Fernandez, M. J. & Aaltonen, L. A. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nature Rev. Cancer 3, 193–202 (2003).

    CAS  Google Scholar 

  • Pollard, P. J., Wortham, N. C. & Tomlinson, I. P. The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann. Med. 35, 632–639 (2003).

    CAS  PubMed  Google Scholar 

  • Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7, 77–85 (2005). This work described the metabolic signalling mechanism showing that succinate can behave as an intracellular messenger that links SDH dysfunction to HIF induction.

    CAS  PubMed  Google Scholar 

  • Holme, E. et al. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A→G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am. J. Hum. Genet. 52, 551–556 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gimm, O., Armanios, M., Dziema, H., Neumann, H. P. & Eng, C. Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res. 60, 6822–6825 (2000).

    CAS  PubMed  Google Scholar 

  • Favier, J. et al. Hereditary paraganglioma/pheochromocytoma and inherited succinate dehydrogenase deficiency. Horm. Res. 63, 171–179 (2005).

    CAS  PubMed  Google Scholar 

  • Tomitsuka, E., Goto, Y., Taniwaki, M. & Kita, K. Direct evidence for expression of type II flavoprotein subunit in human complex II (succinate–ubiquinone reductase). Biochem. Biophys. Res. Commun. 311, 774–779 (2003).

    CAS  PubMed  Google Scholar 

  • Tomitsuka, E. et al. Direct evidence for two distinct forms of the flavoprotein subunit of human mitochondrial complex II (succinate–ubiquinone reductase). J. Biochem. (Tokyo) 134, 191–195 (2003).

    CAS  Google Scholar 

  • Alam, N. A. et al. Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum. Mol. Genet. 12, 1241–1252 (2003).

    CAS  PubMed  Google Scholar 

  • Taschner, P. E. et al. Nearly all hereditary paragangliomas in the Netherlands are caused by two founder mutations in the SDHD gene. Genes Chromosomes Cancer 31, 274–281 (2001).

    CAS  PubMed  Google Scholar 

  • Niemann, S., Muller, U., Engelhardt, D. & Lohse, P. Autosomal dominant malignant and catecholamine-producing paraganglioma caused by a splice donor site mutation in SDHC. Hum. Genet. 113, 92–94 (2003).

    PubMed  Google Scholar 

  • McWhinney, S. R. et al. Large germline deletions of mitochondrial complex II subunits SDHB and SDHD in hereditary paraganglioma. J. Clin. Endocrinol. Metab. 89, 5694–5699 (2004).

    CAS  PubMed  Google Scholar 

  • Baysal, B. E. et al. An Alu-mediated partial SDHC deletion causes familial and sporadic paraganglioma. J. Med. Genet. 41, 703–709 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, I., Wong, T., Martinez-Mir, A., Christiano, A. M. & McGrath, J. A. Familial multiple cutaneous and uterine leiomyomas associated with papillary renal cell cancer. Clin. Exp. Dermatol. 30, 75–78 (2005).

    CAS  PubMed  Google Scholar 

  • Toro, J. R. et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am. J. Hum. Genet. 73, 95–106 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douwes Dekker, P. B. et al. SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J. Pathol. 201, 480–486 (2003).

    CAS  PubMed  Google Scholar 

  • Neumann, H. P. et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292, 943–951 (2004).

    CAS  PubMed  Google Scholar 

  • Gimenez-Roqueplo, A. P. et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 63, 5615–5621 (2003).

    CAS  PubMed  Google Scholar 

  • Maier-Woelfle, M. et al. A novel succinate dehydrogenase subunit B gene mutation, H132P, causes familial malignant sympathetic extraadrenal paragangliomas. J. Clin. Endocrinol. Metab. 89, 362–367 (2004).

    CAS  PubMed  Google Scholar 

  • Rustin, P., Munnich, A. & Rotig, A. Succinate dehydrogenase and human diseases: new insights into a well-known enzyme. Eur. J. Hum. Genet. 10, 289–291 (2002).

    CAS  PubMed  Google Scholar 

  • Vanharanta, S. et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am. J. Hum. Genet. 74, 153–159 (2004).

    CAS  PubMed  Google Scholar 

  • Astuti, D. et al. Germline SDHD mutation in familial phaeochromocytoma. Lancet 357, 1181–1182 (2001).

    CAS  PubMed  Google Scholar 

  • Baysal, B. E. et al. Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas. J. Med. Genet. 39, 178–183 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann, H. P. et al. Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 346, 1459–1466 (2002).

    CAS  PubMed  Google Scholar 

  • Benn, D. E. et al. Novel succinate dehydrogenase subunit B (SDHB) mutations in familial phaeochromocytomas and paragangliomas, but an absence of somatic SDHB mutations in sporadic phaeochromocytomas. Oncogene 22, 1358–1364 (2003).

    CAS  PubMed  Google Scholar 

  • Dannenberg, H. et al. Clinical characteristics of pheochromocytoma patients with germline mutations in SDHD. J. Clin. Oncol. 23, 1894–1901 (2005).

    CAS  PubMed  Google Scholar 

  • Mhatre, A. N., Li, Y., Feng, L., Gasperin, A. & Lalwani, A. K. SDHB, SDHC, and SDHD mutation screen in sporadic and familial head and neck paragangliomas. Clin. Genet. 66, 461–466 (2004).

    CAS  PubMed  Google Scholar 

  • Dannenberg, H. et al. Frequent germ-line succinate dehydrogenase subunit D gene mutations in patients with apparently sporadic parasympathetic paraganglioma. Clin. Cancer Res. 8, 2061–2066 (2002).

    CAS  PubMed  Google Scholar 

  • Masuoka, J. et al. Germline SDHD mutation in paraganglioma of the spinal cord. Oncogene 20, 5084–5086 (2001).

    CAS  PubMed  Google Scholar 

  • Barker, K. T. et al. Low frequency of somatic mutations in the FH/multiple cutaneous leiomyomatosis gene in sporadic leiomyosarcomas and uterine leiomyomas. Br. J. Cancer 87, 446–448 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiuru, M. et al. Few FH mutations in sporadic counterparts of tumor types observed in hereditary leiomyomatosis and renal cell cancer families. Cancer Res. 62, 4554–4557 (2002).

    CAS  PubMed  Google Scholar 

  • Pollard, P. et al. Evidence of increased microvessel density and activation of the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell cancer syndrome. J. Pathol. 205, 41–49 (2005). Shows a phenotypic link between FH mutations and pseudo-hypoxia.

    PubMed  Google Scholar 

  • Lehtonen, R. et al. Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. Am. J. Pathol. 164, 17–22 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiuru, M. et al. No germline FH mutations in familial breast cancer patients. Eur. J. Hum. Genet. 13, 506–509 (2005).

    CAS  PubMed  Google Scholar 

  • Morris, M. R. et al. Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell carcinoma. J. Clin. Pathol. 57, 706–711 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newmeyer, D. D. & Ferguson-Miller, S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481–490 (2003).

    CAS  Google Scholar 

  • Karbowski, M. & Youle, R. J. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ. 10, 870–880 (2003).

    CAS  PubMed  Google Scholar 

  • Downward, J. Cell biology: metabolism meets death. Nature 424, 896–897 (2003).

    CAS  PubMed  Google Scholar 

  • Ricci, J. E. et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117, 773–786 (2004).

    CAS  PubMed  Google Scholar 

  • Albayrak, T. et al. The tumor suppressor cybL, a component of the respiratory chain, mediates apoptosis induction. Mol. Biol. Cell 14, 3082–3096 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii, T. et al. A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res. 65, 203–209 (2005).

    CAS  PubMed  Google Scholar 

  • Lee, S. et al. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8, 155–167 (2005).

    PubMed  Google Scholar 

  • Kim, J. W. & Dang, C. V. Multifaceted roles of glycolytic enzymes. Trends Biochem. Sci. 30, 142–150 (2005).

    CAS  PubMed  Google Scholar 

  • Majewski, N. et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell 16, 819–830 (2004).

    CAS  PubMed  Google Scholar 

  • Storz, P. Reactive oxygen species in tumor progression. Front. Biosci. 10, 1881–1896 (2005).

    CAS  PubMed  Google Scholar 

  • Semenza, G. L. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med. 8 (Suppl.), 62–67 (2002).

    Google Scholar 

  • Covello, K. L. & Simon, M. C. HIFs, hypoxia, and vascular development. Curr. Top. Dev. Biol. 62, 37–54 (2004).

    CAS  PubMed  Google Scholar 

  • Yeo, H. & Roman, S. Pheochromocytoma and functional paraganglioma. Curr. Opin. Oncol. 17, 13–18 (2005).

    PubMed  Google Scholar 

  • Lopez-Barneo, J., del Toro, R., Levitsky, K. L., Chiara, M. D. & Ortega-Saenz, P. Regulation of oxygen sensing by ion channels. J. Appl. Physiol. 96, 1187–1195 (2004).

    CAS  PubMed  Google Scholar 

  • Astrom, K., Cohen, J. E., Willett-Brozick, J. E., Aston, C. E. & Baysal, B. E. Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum. Genet. 113, 228–237 (2003). Shows that low oxygen-tension (high altitude) increases the penetrance and the severity of tumours with SDHD mutations. This is an independent confirmation of the phenotypic link between SDH dysfunction and pseudo-hypoxia.

    PubMed  Google Scholar 

  • Baysal, B. E. Genomic imprinting and environment in hereditary paraganglioma. Am. J. Med. Genet. C. Semin. Med. Genet. 129, 85–90 (2004).

    Google Scholar 

  • Gimenez-Roqueplo, A. P. et al. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzy z-Roqueplo, A. P. et al. Functional consequences of a SDHB gene mutation in an apparently sporadic pheochromocytoma. J. Clin. Endocrinol. Metab. 87, 4771–4774 (2002).

    CAS  PubMed  Google Scholar 

  • Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14, 2231–2239 (2005).

    CAS  PubMed  Google Scholar 

  • Dahia, P. L. M. et al. A HIF1α regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genetics 1, e8 (2005).

    PubMed Central  Google Scholar 

  • Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).

    CAS  PubMed  Google Scholar 

  • Kim, W. Y. & Kaelin, W. G. Role of VHL gene mutation in human cancer. J. Clin. Oncol. 22, 4991–5004 (2004).

    CAS  PubMed  Google Scholar 

  • Hoffman, M. A. et al. von Hippel–Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum. Mol. Genet. 10, 1019–1027 (2001).

    CAS  PubMed  Google Scholar 

  • Clifford, S. C. et al. Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel–Lindau disease. Hum. Mol. Genet. 10, 1029–1038 (2001).

    CAS  PubMed  Google Scholar 

  • Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nature Rev. Cancer 2, 38–47 (2002).

    CAS  Google Scholar 

  • Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    CAS  Google Scholar 

  • Elstrom, R. L. et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64, 3892–3899 (2004).

    CAS  PubMed  Google Scholar 

  • Sowter, H. M., Ratcliffe, P. J., Watson, P., Greenberg, A. H. & Harris, A. L. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 61, 6669–6673 (2001).

    CAS  PubMed  Google Scholar 

  • Erler, J. T. et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol. Cell. Biol. 24, 2875–2889 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blouw, B. et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4, 133–146 (2003).

    CAS  PubMed  Google Scholar 

  • Safran, M. & Kaelin, W. G. Jr. HIF hydroxylation and the mammalian oxygen-sensing pathway. J. Clin. Invest. 111, 779–783 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nature Rev. Mol. Cell Biol. 5, 343–354 (2004).

    CAS  Google Scholar 

  • Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000).

    CAS  PubMed  Google Scholar 

  • Moeller, B. J., Cao, Y., Li, C. Y. & Dewhirst, M. W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5, 429–441 (2004).

    CAS  PubMed  Google Scholar 

  • Gerald, D. et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118, 781–794 (2004). Gives biochemical evidence that ROS (hydrogen peroxide) can inhibit HIF PHD activity.

    CAS  PubMed  Google Scholar 

  • Dalgard, C. L., Lu, H., Mohyeldin, A. & Verma, A. Endogenous 2-oxoacids differentially regulate expression of oxygen sensors. Biochem. J. 380, 419–424 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colombini, M., Blachly-Dyson, E. & Forte, M. VDAC, a channel in the outer mitochondrial membrane. Ion Channels 4, 169–202 (1996).

    CAS  PubMed  Google Scholar 

  • Palmieri, F. The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch. 447, 689–709 (2004).

    CAS  PubMed  Google Scholar 

  • Butow, R. A. & Avadhani, N. G. Mitochondrial signaling: the retrograde response. Mol. Cell 14, 1–15 (2004).

    CAS  PubMed  Google Scholar 

  • Marx, J. Cell biology. How cells endure low oxygen. Science 303, 1454–1456 (2004).

    CAS  PubMed  Google Scholar 

  • Kaelin, W. G. Jr. ROS: really involved in oxygen sensing. Cell. Metab. 1, 357–358 (2005).

    CAS  PubMed  Google Scholar 

  • Hutton, J. J. Jr, Tappel, A. L. & Udenfriend, S. Cofactor and substrate requirements of collagen proline hydroxylase. Arch. Biochem. Biophys. 118, 231–240 (1967).

    CAS  Google Scholar 

  • Myllyla, R., Tuderman, L. & Kivirikko, K. I. Mechanism of the prolyl hydroxylase reaction. 2. Kinetic analysis of the reaction sequence. Eur. J. Biochem. 80, 349–357 (1977).

    CAS  PubMed  Google Scholar 

  • Badenhop, R. F. et al. Novel mutations in the SDHD gene in pedigrees with familial carotid body paraganglioma and sensorineural hearing loss. Genes Chromosomes Cancer 31, 255–263 (2001).

    CAS  PubMed  Google Scholar 

  • van Schothorst, E. M. et al. Paragangliomas of the head and neck region show complete loss of heterozygosity at 11q22–q23 in chief cells and the flow-sorted DNA aneuploid fraction. Hum. Pathol. 29, 1045–1049 (1998).

    CAS  PubMed  Google Scholar 

  • Hensen, E. F. et al. Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene 23, 4076–4083 (2004).

    CAS  PubMed  Google Scholar 

  • Raha, S. & Robinson, B. H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25, 502–508 (2000).

    CAS  PubMed  Google Scholar 

  • Messner, K. R. & Imlay, J. A. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J. Biol. Chem. 277, 42563–42571 (2002).

    CAS  PubMed  Google Scholar 

  • Paddenberg, R. et al. Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L710–L719 (2003).

    CAS  PubMed  Google Scholar