nature.com

Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response - Nature Reviews Cancer

  • ️Moeller, Benjamin
  • ️Sun Jun 01 2008
  • Virchow, R. Die Krankhaften Geschwulste (August Hirschwald, Berlin, 1863). The first report that vascular structures in tumours are abnormal.

    Google Scholar 

  • Goldman, E. Growth of malignant disease in man and the lower animals with special reference to vascular system. Proc. R. Soc. Med. 1, 1 (1907).

    Google Scholar 

  • Warren, B. A. in Tumor Blood Circulation: Angiogenesis, vascular morphology and blood flow of experimental and human tumors (ed. Peterson, H. I.) 1–48 (CRC Press, Boca Raton, 1979).

    Google Scholar 

  • Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971). The first to suggest that inhibition of tumour angiogenesis could have therapeutic benefit.

    Article  CAS  PubMed  Google Scholar 

  • Vaupel, P., Thews, O., Kelleher, D. K. & Hoeckel, M. Oxygenation of human tumors: the Mainz experience. Strahlenther. Onkol. 174 (Suppl. 4), 6–12 (1998).

    PubMed  Google Scholar 

  • Braun, R. D., Lanzen, J. L., Snyder, S. A. & Dewhirst, M. W. Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents. Am. J. Physiol. Heart Circ. Physiol. 280, H2533–H2544 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    Article  CAS  Google Scholar 

  • Wang, G. L. & Semenza, G. L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl Acad. Sci. USA 90, 4304–4308 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 5447–5454 (1992). Discovered that HIF1 is the oxygen-sensitive transcription factor that controls erythropoeitin synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001). The first to report that prolyl hydroxylation, which requires molecular oxygen, is the fundamental mechanism for stabilizing HIF1α under hypoxic conditions.

    Article  CAS  PubMed  Google Scholar 

  • Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nature Cell Biol. 2, 423–427 (2000). The first to report that oxygen-dependent degradation of HIF1α occurs by recognition of the protein by the VHL complex

    Article  CAS  PubMed  Google Scholar 

  • Thurman, R. G., Ji, S., Matsumura, T. & Lemasters, J. J. Is hypoxia involved in the mechanism of alcohol-induced liver injury? Fundam. Appl. Toxicol. 4, 125–133 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Wangsa-Wirawan, N. D. & Linsenmeier, R. A. Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol. 121, 547–557 (2003).

    Article  PubMed  Google Scholar 

  • Haroon, Z. A., Raleigh, J. A., Greenberg, C. S. & Dewhirst, M. W. Early wound healing exhibits cytokine surge without evidence of hypoxia. Ann. Surg. 231, 137–147 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale, L. P., Braun, R. D., Gwinn, W. M., Greer, P. K. & Dewhirst, M. W. Hypoxia in the thymus: role of oxygen tension in thymocyte survival. Am. J. Physiol. Heart. Circ. Physiol. 282, H1467–1477 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Samoszuk, M. K., Walter, J. & Mechetner, E. Improved immunohistochemical method for detecting hypoxia gradients in mouse tissues and tumors. J. Histochem. Cytochem. 52, 837–839 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Henquell, L., Odoroff, C. L. & Honig, C. R. Coronary intercapillary distance during growth: relation to PtO2 and aerobic capacity. Am J. Physiol. 231, 1852–1859 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA 104, 5431–5436 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arteel, G. E., Thurman, R. G., Yates, J. M. & Raleigh, J. A. Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver. Br. J. Cancer 72, 889–895 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laughlin, K. M. et al. Biodistribution of the nitroimidazole EF5 (2-[2-nitro-1H-imidazol-1-yl]-N-(2, 2, 3, 3, 3-pentafluoropropyl) acetamide) in mice bearing subcutaneous EMT6 tumors. J. Pharmacol. Exp. Ther. 277, 1049–1057 (1996).

    CAS  PubMed  Google Scholar 

  • Rosmorduc, O. et al. Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis. Am. J. Pathol. 155, 1065–1073 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houck, K. A., Leung, D. W., Rowland, A. M., Winer, J. & Ferrara, N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem. 267, 26031–26037 (1992).

    CAS  PubMed  Google Scholar 

  • Fannon, M. et al. Binding inhibition of angiogenic factors by heparan sulfate proteoglycans in aqueous humor: potential mechanism for maintenance of an avascular environment. FASEB J. 17, 902–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Chou, S. C., Azuma, Y., Varia, M. A. & Raleigh, J. A. Evidence that involucrin, a marker for differentiation, is oxygen regulated in human squamous cell carcinomas. Br. J. Cancer 90, 728–735 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y. et al. Hypoxia upregulates osteopontin expression in NIH-3T3 cells via a Ras-activated enhancer. Oncogene 24, 6555–6563 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Huang, J. H. et al. Requirements for T lymphocyte migration in explanted lymph nodes. J. Immunol. 178, 7747–7755 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Li, F. et al. Regulation of HIF-1α stability through S-nitrosylation. Mol. Cell 26, 63–74 (2007). This paper proved that nitrosylation of a cysteine residue in the oxygen-dependent degradation domain of HIF1α can prevent its degradation under aerobic conditions.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000). The first report suggesting that reactive oxygen species may be responsible for stabilizing HIF1α under hypoxic conditions.

    Article  CAS  PubMed  Google Scholar 

  • Guzy, R. D. et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 1, 401–408 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Bell, E. L. et al. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. 177, 1029–1036 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignarro, L. J. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J. Physiol. Pharmacol. 53, 503–514 (2002).

    CAS  PubMed  Google Scholar 

  • Pryor, W. A. et al. Free radical biology and medicine: it's a gas, man! Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R491–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Moncada, S. & Higgs, E. A. The discovery of nitric oxide and its role in vascular biology. Br. J. Pharmacol. 147 (Suppl. 1), S193–S201 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tozer, G. M. & Everett, S. A. Nitric oxide in tumor biology and cancer therapy. Part 2: Therapeutic implications. Clin. Oncol. (R. Coll. Radiol.) 9, 357–364 (1997).

    Article  CAS  Google Scholar 

  • Tozer, G. M. & Everett, S. A. Nitric oxide in tumour biology and cancer therapy. Part 1: Physiological aspects. Clin. Oncol. (R. Coll. Radiol.) 9, 282–293 (1997).

    Article  CAS  Google Scholar 

  • BelAiba, R. S. et al. Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biol. Chem. 385, 249–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Page, E. L., Chan, D. A., Giaccia, A. J., Levine, M. & Richard, D. E. Hypoxia-inducible factor-1α stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion. Mol. Biol. Cell 19, 86–94 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo, J., Garcia-Lecea, M., Cadenas, S., Hernandez, C. & Moncada, S. Regulation of hypoxia-inducible factor-1α by nitric oxide through mitochondria-dependent and -independent pathways. Biochem. J. 376, 537–544 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumbayev, V. V., Budde, A., Zhou, J. & Brune, B. HIF-1 α protein as a target for S-nitrosation. FEBS Lett. 535, 106–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Kimura, H. et al. Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide. J. Biol. Chem. 276, 2292–2298 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Sandau, K. B., Faus, H. G. & Brune, B. Induction of hypoxia-inducible-factor 1 by nitric oxide is mediated via the PI 3K pathway. Biochem. Biophys. Res. Commun. 278, 263–267 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kasuno, K. et al. Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling. J. Biol. Chem. 279, 2550–2558 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Mansfield, K. D. et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell Metab. 1, 393–399 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkataraman, S. et al. Manganese superoxide dismutase overexpression inhibits the growth of androgen-independent prostate cancer cells. Oncogene 24, 77–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wang, M. et al. Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1α and vascular endothelial growth factor. Oncogene 24, 8154–8166 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. et al. Carbon monoxide and nitric oxide suppress the hypoxic induction of vascular endothelial growth factor gene via the 5′ enhancer. J. Biol. Chem. 273, 15257–15262 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Huang, L. E., Willmore, W. G., Gu, J., Goldberg, M. A. & Bunn, H. F. Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling. J. Biol. Chem. 274, 9038–9044 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Hagen, T., Taylor, C. T., Lam, F. & Moncada, S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α. Science 302, 1975–1978 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Berchner-Pfannschmidt, U., Yamac, H., Trinidad, B. & Fandrey, J. Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J. Biol. Chem. 282, 1788–1796 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Jankovic, B. et al. Comparison between pimonidazole binding, oxygen electrode measurements, and expression of endogenous hypoxia markers in cancer of the uterine cervix. Cytometry B Clin. Cytom. 70, 45–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Raleigh, J. A. et al. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 58, 3765–3768 (1998).

    CAS  PubMed  Google Scholar 

  • Vordermark, D. & Brown, J. M. Evaluation of hypoxia-inducible factor-1α (HIF-1α) as an intrinsic marker of tumor hypoxia in U87 MG human glioblastoma: in vitro and xenograft studies. Int. J. Radiat. Oncol. Biol. Phys. 56, 1184–1193 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Janssen, H. L. et al. HIF-1A, pimonidazole, and iododeoxyuridine to estimate hypoxia and perfusion in human head-and-neck tumors. Int. J. Radiat. Oncol. Biol. Phys. 54, 1537–1549 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Quintero, M., Brennan, P. A., Thomas, G. J. & Moncada, S. Nitric oxide is a factor in the stabilization of hypoxia-inducible factor-1α in cancer: role of free radical formation. Cancer Res. 66, 770–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nature Rev. Cancer 4, 437–447 (2004).

    Article  CAS  Google Scholar 

  • Ljungkvist, A. S., Bussink, J., Kaanders, J. H. & van der Kogel, A. J. Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat. Res. 167, 127–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Vaupel, P. & Harrison, L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9 (Suppl. 5), 4–9 (2004).

    Article  PubMed  Google Scholar 

  • Dewhirst, M. W. et al. Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia. Br. J. Cancer 79, 1717–1722 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secomb, T. W., Hsu, R., Dewhirst, M. W., Klitzman, B. & Gross, J. F. Analysis of oxygen transport to tumor tissue by microvascular networks. Int. J. Radiat. Oncol. Biol. Phys. 25, 481–489 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Secomb, T. W., Hsu, R., Park, E. Y. & Dewhirst, M. W. Green's function methods for analysis of oxygen delivery to tissue by microvascular networks. Ann. Biomed. Eng. 32, 1519–1529 (2004).

    Article  PubMed  Google Scholar 

  • Dewhirst, M. W. et al. Microvascular studies on the origins of perfusion-limited hypoxia. Br. J. Cancer Suppl. 27, S247–251 (1996). The first report to demonstrate that arteriolar vasomotion can be involved in intermittent hypoxia.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson, K. et al. Effect of longitudinal oxygen gradients on effectiveness of manipulation of tumor oxygenation. Cancer Res. 63, 4705–4712 (2003).

    CAS  PubMed  Google Scholar 

  • Sorg, B. S., Moeller, B. J., Donovan, O., Cao, Y. & Dewhirst, M. W. Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development. J. Biomed. Opt. 10, 44004 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Ljungkvist, A. S. et al. Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas. Int. J. Radiat. Oncol. Biol. Phys. 54, 215–228 (2002).

    Article  PubMed  Google Scholar 

  • Devasahayam, N. et al. Strategies for improved temporal and spectral resolution in in vivo oximetric imaging using time-domain EPR. Magn. Reson. Med. 57, 776–783 (2007).

    Article  PubMed  Google Scholar 

  • Wijffels, K. I. et al. Vascular architecture and hypoxic profiles in human head and neck squamous cell carcinomas. Br. J. Cancer 83, 674–683 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, J. M. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br. J. Radiol 52, 650–656 (1979). The first report that intermittent hypoxia that is radiobiologically important can be found in tumours.

    Article  CAS  PubMed  Google Scholar 

  • Reinhold, H. S., Blachiwiecz, B. & Blok, A. Oxygenation and reoxygenation in 'sandwich' tumours. Bibl. Anat, 270–272 (1977).

  • Yamaura, H. & Matsuzawa, T. Tumor regrowth after irradiation; an experimental approach. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 35, 201–219 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Dewhirst, M. W. Intermittent hypoxia furthers the rationale for hypoxia-inducible factor-1 targeting. Cancer Res. 67, 854–855 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Durand, R. E. & Aquino-Parsons, C. Clinical relevance of intermittent tumour blood flow. Acta Oncol. 40, 929–936 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Chaplin, D. J., Olive, P. L. & Durand, R. E. Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res. 47, 597–601 (1987).

    CAS  PubMed  Google Scholar 

  • Chaplin, D. J., Trotter, M. J., Durand, R. E., Olive, P. L. & Minchinton, A. I. Evidence for intermittent radiobiological hypoxia in experimental tumour systems. Biomed. Biochim. Acta 48, S255–259 (1989).

    CAS  PubMed  Google Scholar 

  • Minchinton, A. I., Durand, R. E. & Chaplin, D. J. Intermittent blood flow in the KHT sarcoma — flow cytometry studies using Hoechst 33342. Br. J. Cancer 62, 195–200 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, C. D., Stern, S., Chaplin, D. J. & Guichard, M. Transient perfusion and radiosensitizing effect after nicotinamide, carbogen, and perflubron emulsion administration. Radiother. Oncol. 39, 235–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Trotter, M. J., Chaplin, D. J. & Olive, P. L. Effect of angiotensin II on intermittent tumour blood flow and acute hypoxia in the murine SCCVII carcinoma. Eur. J. Cancer 27, 887–893 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Chaplin, D. J., Durand, R. E. & Olive, P. L. Acute hypoxia in tumors: implications for modifiers of radiation effects. Int. J. Radiat. Oncol. Biol. Phys. 12, 1279–1282 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Durand, R. E. Intermittent blood flow in solid tumours — an under-appreciated source of 'drug resistance'. Cancer Metastasis Rev. 20, 57–61 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Durand, R. E. & Aquino-Parsons, C. Non-constant tumour blood flow — implications for therapy. Acta Oncol. 40, 862–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kimura, H. et al. Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res. 56, 5522–5528 (1996). The first report to show that intermittent hypoxia can be caused by instabilities in tumour microvessel red cell flux and that vascular stasis is not required for this effect.

    CAS  PubMed  Google Scholar 

  • Lanzen, J. et al. Direct demonstration of instabilities in oxygen concentrations within the extravascular compartment of an experimental tumor. Cancer Res. 66, 2219–2223 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Braun, R. D., Lanzen, J. L. & Dewhirst, M. W. Fourier analysis of fluctuations of oxygen tension and blood flow in R3230Ac tumors and muscle in rats. Am. J. Physiol. 277, H551–568 (1999).

    CAS  PubMed  Google Scholar 

  • Brurberg, K. G., Skogmo, H. K., Graff, B. A., Olsen, D. R. & Rofstad, E. K. Fluctuations in pO2 in poorly and well-oxygenated spontaneous canine tumors before and during fractionated radiation therapy. Radiother. Oncol. 77, 220–226 (2005). The first report that intermittent hypoxia can occur in clinically-relevant canine tumours.

    Article  PubMed  Google Scholar 

  • Cardenas-Navia, L. I. et al. Tumor-dependent kinetics of partial pressure of oxygen fluctuations during air and oxygen breathing. Cancer Res. 64, 6010–6017 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Pigott, K. H., Hill, S. A., Chaplin, D. J. & Saunders, M. I. Microregional fluctuations in perfusion within human tumours detected using laser Doppler flowmetry. Radiother. Oncol. 40, 45–50 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Bennewith, K. L., Raleigh, J. A. & Durand, R. E. Orally administered pimonidazole to label hypoxic tumor cells. Cancer Res. 62, 6827–6830 (2002).

    CAS  PubMed  Google Scholar 

  • Cardenas-Navia, L. I. et al. The pervasive presence of fluctuating oxygenation in tumors. Cancer Res. (in the press).

  • Sorg, B. S., Hardee, M. E., Agarwal, N., Moeller, B. J. & Dewhirst, M. W. Spectral imaging facilitates visualization and measurements of unstable and abnormal microvascular oxygen transport in tumors. J. Biomed. Opt. 13, 014026 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Baudelet, C. et al. Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia? Phys. Med. Biol. 49, 3389–3411 (2004).

    Article  PubMed  Google Scholar 

  • Brurberg, K. G., Benjaminsen, I. C., Dorum, L. M. & Rofstad, E. K. Fluctuations in tumor blood perfusion assessed by dynamic contrast-enhanced MRI. Magn. Reson. Med. 58, 473–481 (2007).

    Article  PubMed  Google Scholar 

  • Baudelet, C. et al. The role of vessel maturation and vessel functionality in spontaneous fluctuations of T2*-weighted GRE signal within tumors. NMR Biomed. 19, 69–76 (2006).

    Article  PubMed  Google Scholar 

  • Patan, S., Munn, L. L. & Jain, R. K. Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc. Res. 51, 260–272 (1996). This paper is the first to connect the concept of vascular remodelling as a putative mechanism for intermittent hypoxia.

    Article  CAS  PubMed  Google Scholar 

  • Chien, S., Usami, S. & Skalak, R. in Handbook of Physiology (eds Renkin, E. M., Michel, C. & Geiger, S. R.) 217–251 (American Physiological Society, Bethesda, 1984).

    Google Scholar 

  • Kiani, M. F., Pries, A. R., Hsu, L. L., Sarelius, I. H. & Cokelet, G. R. Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms. Am. J. Physiol. 266, H1822–H1828 (1994).

    CAS  PubMed  Google Scholar 

  • Pries, A. R., Schonfeld, D., Gaehtgens, P., Kiani, M. F. & Cokelet, G. R. Diameter variability and microvascular flow resistance. Am. J. Physiol. 272, H2716–H2725 (1997).

    CAS  PubMed  Google Scholar 

  • Kavanagh, B. D., Coffey, B. E., Needham, D., Hochmuth, R. M. & Dewhirst, M. W. The effect of flunarizine on erythrocyte suspension viscosity under conditions of extreme hypoxia, low pH, and lactate treatment. Br. J. Cancer 67, 734–741 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, Y. et al. Observation of incipient tumor angiogenesis that is independent of hypoxia and hypoxia inducible factor-1 activation. Cancer Res. 65, 5498–5505 (2005). This paper provides evidence in a preclinical model that hypoxia is not a prerequisite for the initiation of tumour angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  • Nehmeh, S. A. et al. Reproducibility of intratumor distribution of 18F-fluoromisonidazole in head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 235–242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, Y. J. et al. Heterozygous HIF-1α deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J. Physiol. 577, 705–716 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, G., Nanduri, J., Bhasker, C. R., Semenza, G. L. & Prabhakar, N. R. Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J. Biol. Chem. 280, 4321–4328 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Semenza, G. L. & Prabhakar, N. R. HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid. Redox Signal. 9, 1391–1396 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Toffoli, S., Feron, O., Raes, M. & Michiels, C. Intermittent hypoxia changes HIF-1α phosphorylation pattern in endothelial cells: unravelling of a new PKA-dependent regulation of HIF-1α. Biochim. Biophys. Acta 1773, 1558–1571 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Martinive, P. et al. Preconditioning of the tumor vasculature and tumor cells by intermittent hypoxia: implications for anticancer therapies. Cancer Res. 66, 11736–11744 (2006). This report shows that HIF1 upregulation is more strongly induced by repeated exposures to hypoxia–reoxygenation than by chronic hypoxia.

    Article  CAS  PubMed  Google Scholar 

  • Sioussat, T. M., Dvorak, H. F., Brock, T. A. & Senger, D. R. Inhibition of vascular permeability factor (vascular endothelial growth factor) with antipeptide antibodies. Arch. Biochem. Biophys. 301, 15–20 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Senger, D. R., Perruzzi, C. A., Feder, J. & Dvorak, H. F. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 46, 5629–5632 (1986).

    CAS  PubMed  Google Scholar 

  • Ferrara, N. & Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun 161, 851–858 (1989). This is the first report that VEGF is a mitogen for endothelial cells.

    Article  CAS  PubMed  Google Scholar 

  • Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl Acad. Sci. USA 93, 14765–14770 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998 (1999). This report is the first to theorize that a hypoxic crisis, mediated by regression of coopted host microvasculature, may be required for tumour angiogenesis initiation.

    Article  CAS  PubMed  Google Scholar 

  • Holash, J., Wiegand, S. J. & Yancopoulos, G. D. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18, 5356–5362 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Lin, P. et al. Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. J. Clin. Invest. 100, 2072–2078 (1997). This is the first paper demonstrating the importance of TIE2, the receptor for angiopoietins, as a pro-angiogenic endothelial cell receptor in tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters, K. G. et al. Functional significance of Tie2 signaling in the adult vasculature. Recent Prog. Horm. Res. 59, 51–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Winkles, J. A. et al. Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor). Proc. Natl Acad. Sci. USA 84, 7124–7128 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Mazure, N. M., Chen, E. Y., Yeh, P., Laderoute, K. R. & Giaccia, A. J. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res. 56, 3436–3440 (1996).

    CAS  PubMed  Google Scholar 

  • Diaz-Gonzalez, J. A., Russell, J., Rouzaut, A., Gil-Bazo, I. & Montuenga, L. Targeting hypoxia and angiogenesis through HIF-1α inhibition. Cancer Biol. Ther. 4, 1055–1062 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Laderoute, K. R. et al. Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clin. Cancer Res. 6, 2941–2950 (2000).

    CAS  PubMed  Google Scholar 

  • Steinman, S., Wang, J., Bourne, P., Yang, Q. & Tang, P. Expression of cytokeratin markers, ER-α, PR, HER-2/neu, and EGFR in pure ductal carcinoma in situ (DCIS) and DCIS with co-existing invasive ductal carcinoma (IDC) of the breast. Ann. Clin. Lab. Sci. 37, 127–134 (2007).

    CAS  PubMed  Google Scholar 

  • Dabbs, D. J., Chivukula, M., Carter, G. & Bhargava, R. Basal phenotype of ductal carcinoma in situ: recognition and immunohistologic profile. Mod. Pathol. 19, 1506–1511 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kamat, C. D. et al. Mutant p53 facilitates pro-angiogenic, hyperproliferative phenotype in response to chronic relative hypoxia. Cancer Lett. 249, 209–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, S. et al. Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck. Proc. Natl Acad. Sci. USA 104, 7540–7545 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldkamp, M. M., Lau, N., Rak, J., Kerbel, R. S. & Guha, A. Normoxic and hypoxic regulation of vascular endothelial growth factor (VEGF) by astrocytoma cells is mediated by Ras. Int. J. Cancer 81, 118–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Jiang, B. H. & Liu, L. Z. AKT signaling in regulating angiogenesis. Curr. Cancer Drug Targets 8, 19–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Naumov, G. N. et al. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J. Natl Cancer Inst. 98, 316–325 (2006).

    Article  PubMed  Google Scholar 

  • Stessels, F. et al. Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br. J. Cancer 90, 1429–1436 (2004). The first report that vessel cooption can occur in human cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colpaert, C. G. et al. Cutaneous breast cancer deposits show distinct growth patterns with different degrees of angiogenesis, hypoxia and fibrin deposition. Histopathology 42, 530–540 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Bos, R. et al. Levels of hypoxia-inducible factor-1 α during breast carcinogenesis. J. Natl Cancer Inst. 93, 309–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Zakrzewicz, A., Secomb, T. W. & Pries, A. R. Angioadaptation: keeping the vascular system in shape. News Physiol. Sci. 17, 197–201 (2002).

    PubMed  Google Scholar 

  • Gregoire, V., Hittelman, W. N., Rosier, J. F. & Milas, L. Chemo-radiotherapy: radiosensitizing nucleoside analogues (review). Oncol. Rep. 6, 949–957 (1999).

    CAS  PubMed  Google Scholar 

  • Bussink, J., Kaanders, J. H., Rijken, P. F., Raleigh, J. A. & van der Kogel, A. J. Changes in blood perfusion and hypoxia after irradiation of a human squamous cell carcinoma xenograft tumor line. Radiat. Res. 153, 398–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Milas, L., Milross, C. G. & Mason, K. A. Cytotoxic treatments and tumor oxygenation. Cancer J. Sci. Am. 2, 59–60; author reply 60–61 (1996).

    CAS  PubMed  Google Scholar 

  • Milas, L. et al. Role of reoxygenation in induction of enhancement of tumor radioresponse by paclitaxel. Cancer Res. 55, 3564–3568 (1995).

    CAS  PubMed  Google Scholar 

  • Milas, L., Hunter, N., Mason, K. A., Milross, C. & Peters, L. J. Tumor reoxygenation as a mechanism of taxol-induced enhancement of tumor radioresponse. Acta Oncol. 34, 409–412 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Rubin, P. & Casarett, G. Microcirculation of tumors. II. The supervascularized state of irradiated regressing tumors. Clin. Radiol. 17, 346–355 (1966). This paper was the first to suggest that radiation therapy induced a change in tumour vascular density that would favour increased oxygenation.

    Article  CAS  PubMed  Google Scholar 

  • Dewhirst, M. W. et al. Heterogeneity in tumor microvascular response to radiation. Int. J. Radiat. Oncol. Biol. Phys 18, 559–568 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Moeller, B. J., Cao, Y., Li, C. Y. & Dewhirst, M. W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5, 429–441 (2004). This paper demonstrated that tumour reoxygenation after radiotherapy paradoxically led to an increase in HIF1 activity through mechanisms involving free radical generation and stress granule disaggregation.

    Article  CAS  PubMed  Google Scholar 

  • Moeller, B. J. et al. A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness. Int. J. Radiat. Oncol. Biol. Phys. 63, 545–552 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Moeller, B. J. et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 8, 99–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Williams, K. J. et al. Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1. Radiother. Oncol. 75, 89–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kedersha, N. L., Gupta, M., Li, W., Miller, I. & Anderson, P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 α to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431–1442 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnon, C. et al. Radiation and inhibition of angiogenesis by canstatin synergize to induce HIF-1α-mediated tumor apoptotic switch. J. Clin. Invest. 117, 1844–1855 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatum, J. L. et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int. J. Radiat. Biol. 82, 699–757 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Manzoor, A. A., Yuan, H., Palmer, G. M., Viglianti, B. L. & Dewhirst, M. W. in Molecular Imaging: Principles and Practice (eds Weissleder, R., Gambhir, S. S., Ross, B. D. & Rehemtulla, A.) (BC Decker, Ontario, 2008).

    Google Scholar 

  • Raleigh, J. A., Dewhirst, M. W. & Thrall, D. E. Measuring tumor hypoxia. Semin. Radiat. Oncol. 6, 37–45 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Khan, N., Williams, B. B., Hou, H., Li, H. & Swartz, H. M. Repetitive tissue pO2 measurements by electron paramagnetic resonance oximetry: current status and future potential for experimental and clinical studies. Antioxid. Redox Signal. 9, 1169–1182 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan, S. et al. Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography. Antioxid. Redox Signal. 9, 1143–1156 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto, K., Subramanian, S., Murugesan, R., Mitchell, J. B. & Krishna, M. C. Spatially resolved biologic information from in vivo EPRI, OMRI, and MRI. Antioxid. Redox Signal. 9, 1125–1141 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Koch, C. J. Measurement of absolute oxygen levels in cells and tissues using oxygen sensors and 2-nitroimidazole EF5. Methods Enzymol. 352, 3–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Koch, C. J., Evans, S. M. & Lord, E. M. Oxygen dependence of cellular uptake of EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2, 2, 3, 3, 3-pentafluoropropyl)acetamide]: analysis of drug adducts by fluorescent antibodies vs bound radioactivity. Br. J. Cancer 72, 869–874 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch, C. J. & Evans, S. M. Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv. Exp. Med. Biol. 510, 285–292 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Padhani, A. R., Krohn, K. A., Lewis, J. S. & Alber, M. Imaging oxygenation of human tumours. Eur. Radiol. 17, 861–872 (2007).

    Article  PubMed  Google Scholar 

  • Moon, E. J., Brizel, D. M., Chi, J. T. & Dewhirst, M. W. The potential role of intrinsic hypoxia markers as prognostic variables in cancer. Antioxid. Redox Signal. 9, 1237–1294 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Le, Q. T. et al. Expression and prognostic significance of a panel of tissue hypoxia markers in head-and-neck squamous cell carcinomas. Int. J. Radiat. Oncol. Biol. Phys. 69, 167–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Vaupel, P., Hockel, M. & Mayer, A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid. Redox Signal. 9, 1221–1235 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Secomb, T. W., Hsu, R., Ong, E. T., Gross, J. F. & Dewhirst, M. W. Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncol. 34, 313–316 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Dewhirst, M. W., Cao, Y., Li, C. Y. & Moeller, B. Exploring the role of HIF-1 in early angiogenesis and response to radiotherapy. Radiother. Oncol. 83, 249–255 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar