nature.com

Derailed endocytosis: an emerging feature of cancer - Nature Reviews Cancer

  • ️Yarden, Yosef
  • ️Sat Nov 01 2008
  • Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, J. L., Anderson, R. G. & Brown, M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279, 679–685 (1979).

    CAS  PubMed  Google Scholar 

  • Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    CAS  Google Scholar 

  • Parton, R. G. & Simons, K. The multiple faces of caveolae. Nature Rev. Mol. Cell Biol. 8, 185–194 (2007).

    CAS  Google Scholar 

  • Pelkmans, L., Burli, T., Zerial, M. & Helenius, A. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118, 767–780 (2004).

    CAS  PubMed  Google Scholar 

  • Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F. & Wrana, J. L. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nature Cell Biol. 5, 410–421 (2003).

    CAS  PubMed  Google Scholar 

  • Sigismund, S. et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl Acad. Sci. USA 102, 2760–2765 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Llorente, A., Rapak, A., Schmid, S. L., van Deurs, B. & Sandvig, K. Expression of mutant dynamin inhibits toxicity and transport of endocytosed ricin to the Golgi apparatus. J. Cell Biol. 140, 553–563 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Damke, H., Baba, T., van der Bliek, A. M. & Schmid, S. L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol. 131, 69–80 (1995).

    CAS  PubMed  Google Scholar 

  • Lamaze, C. et al. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol. Cell 7, 661–671 (2001).

    CAS  PubMed  Google Scholar 

  • Kumari, S. & Mayor, S. ARF1 is directly involved in dynamin-independent endocytosis. Nature Cell Biol. 10, 30–41 (2008).

    CAS  PubMed  Google Scholar 

  • Innocenti, M. et al. Abi1 regulates the activity of N.-WASP and WAVE in distinct actin-based processes. Nature Cell Biol. 7, 969–976 (2005).

    CAS  PubMed  Google Scholar 

  • Orth, J. D., Krueger, E. W., Weller, S. G. & McNiven, M. A. A novel endocytic mechanism of epidermal growth factor receptor sequestration and internalization. Cancer Res. 66, 3603–3610 (2006).

    CAS  PubMed  Google Scholar 

  • Lanzetti, L., Palamidessi, A., Areces, L., Scita, G. & Di Fiore, P. P. Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases. Nature 429, 309–314 (2004).

    CAS  PubMed  Google Scholar 

  • Becker, K. F. et al. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res. 54, 3845–3852 (1994).

    CAS  PubMed  Google Scholar 

  • Ohashi, M. et al. Human T-cell leukemia virus type 1 Tax oncoprotein induces and interacts with a multi-PDZ domain protein, MAGI-3. Virology 320, 52–62 (2004).

    CAS  PubMed  Google Scholar 

  • Mostov, K., Su, T. & ter Beest, M. Polarized epithelial membrane traffic: conservation and plasticity. Nature Cell Biol. 5, 287–293 (2003).

    CAS  PubMed  Google Scholar 

  • Deborde, S. et al. Clathrin is a key regulator of basolateral polarity. Nature 452, 719–723 (2008). This important paper describes for the first time a requirement for clathrin in polarized sorting of proteins to the basolateral membrane.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nature Cell Biol. 9, 1066–1073 (2007).

    CAS  PubMed  Google Scholar 

  • Pagliarini, R. A. & Xu, T. A genetic screen in Drosophila for metastatic behavior. Science 302, 1227–1231 (2003).

    CAS  PubMed  Google Scholar 

  • Wells, C. D. et al. A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell 125, 535–548 (2006). This interesting study identifies CDC42-associated proteins involved in the maintenance of TJs and trafficking of junctional proteins.

    CAS  PubMed  Google Scholar 

  • Terai, T., Nishimura, N., Kanda, I., Yasui, N. & Sasaki, T. JRAB/MICAL-L2 is a junctional Rab13-binding protein mediating the endocytic recycling of occludin. Mol. Biol. Cell 17, 2465–2475 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamai, T. et al. Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clin. Cancer Res. 10, 4799–4805 (2004).

    CAS  PubMed  Google Scholar 

  • Baas, A. F. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116, 457–466 (2004).

    CAS  PubMed  Google Scholar 

  • Gangar, A., Rossi, G., Andreeva, A., Hales, R. & Brennwald, P. Structurally conserved interaction of Lgl family with SNAREs is critical to their cellular function. Curr. Biol. 15, 1136–1142 (2005).

    CAS  PubMed  Google Scholar 

  • Zhang, X. et al. Lethal giant larvae proteins interact with the exocyst complex and are involved in polarized exocytosis. J. Cell Biol. 170, 273–283 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eder, A. M. et al. Atypical PKCι contributes to poor prognosis through loss of apical-basal polarity and cyclin E overexpression in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 12519–12524 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuphal, S. et al. Expression of Hugl-1 is strongly reduced in malignant melanoma. Oncogene 25, 103–110 (2006).

    CAS  PubMed  Google Scholar 

  • Wang, Y. et al. Tyrosine phosphorylated Par3 regulates epithelial tight junction assembly promoted by EGFR signaling. EMBO J. 25, 5058–5070 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aranda, V. et al. Par6–aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nature Cell Biol. 8, 1235–1245 (2006). This manuscript provides insights into the disruption of cell polarity by growth factor receptors, involving recruitment of the PAR6–aPKC complex to activated ERBB2.

    CAS  PubMed  Google Scholar 

  • Okuda, H. et al. The von Hippel–Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C. J. Biol. Chem. 276, 43611–43617 (2001).

    CAS  PubMed  Google Scholar 

  • Nelson, W. J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Z., Ghosh, S., Wang, Z. & Hunter, T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell 4, 499–515 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Kimura, T., Sakisaka, T., Baba, T., Yamada, T. & Takai, Y. Involvement of the Ras–Ras-activated Rab5 guanine nucleotide exchange factor RIN2–Rab5 pathway in the hepatocyte growth factor-induced endocytosis of E-cadherin. J. Biol. Chem. 281, 10598–10609 (2006).

    CAS  PubMed  Google Scholar 

  • Bryant, D. M. et al. EGF induces macropinocytosis and SNX1-modulated recycling of E-cadherin. J. Cell Sci. 120, 1818–1828 (2007).

    CAS  PubMed  Google Scholar 

  • Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biol. 4, 222–231 (2002). An interesting paper that identified the E3 ligase of E-cadherin and described a role for ubiquitin-dependent downregulation of E-cadherin in the breakdown of cell–cell junctions.

    CAS  PubMed  Google Scholar 

  • Gavard, J. & Gutkind, J. S. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nature Cell Biol. 8, 1223–1234 (2006).

    CAS  PubMed  Google Scholar 

  • Toyoshima, M. et al. Inhibition of tumor growth and metastasis by depletion of vesicular sorting protein Hrs: its regulatory role on E-cadherin and β-catenin. Cancer Res. 67, 5162–5171 (2007).

    CAS  PubMed  Google Scholar 

  • Gavard, J., Patel, V. & Gutkind, J. S. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev. Cell 14, 25–36 (2008).

    CAS  PubMed  Google Scholar 

  • Morishige, M. et al. GEP100 links epidermal growth factor receptor signalling to Arf6 activation to induce breast cancer invasion. Nature Cell Biol. 10, 85–92 (2008). This key paper describes a direct interaction between the ARF6 GEF, GEP100, and activated EGFR, which is necessary for invasiveness of breast cancer cells.

    CAS  PubMed  Google Scholar 

  • Kachhap, S. K. et al. The N-Myc down regulated gene1 (NDRG1) is a Rab4a effector involved in vesicular recycling of E-cadherin. PLoS ONE 2, e844 (2007).

    PubMed  PubMed Central  Google Scholar 

  • Balzac, F. et al. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J. Cell Sci. 118, 4765–4783 (2005).

    CAS  PubMed  Google Scholar 

  • Davis, M. A. & Reynolds, A. B. Blocked acinar development, E-cadherin reduction, and intraepithelial neoplasia upon ablation of p120-catenin in the mouse salivary gland. Dev. Cell 10, 21–31 (2006).

    CAS  PubMed  Google Scholar 

  • Chen, X., Kojima, S., Borisy, G. G. & Green, K. J. p120 catenin associates with kinesin and facilitates the transport of cadherin–catenin complexes to intercellular junctions. J. Cell Biol. 163, 547–557 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, K., Oas, R. G., Chiasson, C. M. & Kowalczyk, A. P. Role of p120-catenin in cadherin trafficking. Biochim. Biophys. Acta 1773, 8–16 (2007).

    CAS  PubMed  Google Scholar 

  • Kallakury, B. V. et al. Decreased expression of catenins (α and β), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer 92, 2786–2795 (2001).

    CAS  PubMed  Google Scholar 

  • Bellovin, D. I., Bates, R. C., Muzikansky, A., Rimm, D. L. & Mercurio, A. M. Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res. 65, 10938–10945 (2005).

    CAS  PubMed  Google Scholar 

  • Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nature Genet. 39, 503–512 (2007).

    CAS  PubMed  Google Scholar 

  • Wiley, H. S., Shvartsman, S. Y. & Lauffenburger, D. A. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 13, 43–50 (2003).

    CAS  PubMed  Google Scholar 

  • Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    CAS  Google Scholar 

  • Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040 (1999).

    CAS  PubMed  Google Scholar 

  • Ebner, R. & Derynck, R. Epidermal growth factor and transforming growth factor-α: differential intracellular routing and processing of ligand-receptor complexes. Cell Reg. 2, 599–612 (1991).

    CAS  Google Scholar 

  • Longva, K. E. et al. Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J. Cell Biol. 156, 843–854 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belleudi, F. et al. Keratinocyte growth factor receptor ligands target the receptor to different intracellular pathways. Traffic 8, 1854–1872 (2007).

    CAS  PubMed  Google Scholar 

  • Nicholson, R. I., Gee, J. M. & Harper, M. E. EGFR and cancer prognosis. Eur. J. Cancer 37 (Suppl. 4), S9–S15 (2001).

    CAS  PubMed  Google Scholar 

  • French, A. R., Sudlow, G. P., Wiley, H. S. & Lauffenburger, D. A. Postendocytic trafficking of epidermal growth factor-receptor complexes is mediated through saturable and specific endosomal interactions. J. Biol. Chem. 269, 15749–15755 (1994).

    CAS  PubMed  Google Scholar 

  • Lenferink, A. E. et al. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J. 17, 3385–3397 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Worthylake, R., Opresko, L. K. & Wiley, H. S. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J. Biol. Chem. 274, 8865–8874 (1999).

    CAS  PubMed  Google Scholar 

  • Hommelgaard, A. M., Lerdrup, M. & van Deurs, B. Association with membrane protrusions makes ErbB2 an internalization-resistant receptor. Mol. Biol. Cell 15, 1557–1567 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Citri, A. et al. Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep. 5, 1165–1170 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lerdrup, M., Hommelgaard, A. M., Grandal, M. & van Deurs, B. Geldanamycin stimulates internalization of ErbB2 in a proteasome-dependent way. J. Cell Sci. 119, 85–95 (2006).

    CAS  PubMed  Google Scholar 

  • Tikhomirov, O. & Carpenter, G. Geldanamycin induces ErbB-2 degradation by proteolytic fragmentation. J. Biol. Chem. 275, 26625–26631 (2000).

    CAS  PubMed  Google Scholar 

  • Ross, J. S. et al. The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 8, 307–325 (2003).

    CAS  PubMed  Google Scholar 

  • Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).

    CAS  PubMed  Google Scholar 

  • Oved, S. et al. Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J. Biol. Chem. 281, 21640–21651 (2006).

    CAS  PubMed  Google Scholar 

  • Yokouchi, M. et al. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J. Biol. Chem. 274, 31707–31712 (1999).

    CAS  PubMed  Google Scholar 

  • Langdon, W. Y., Hartley, J. W., Klinken, S. P., Ruscetti, S. K. & Morse, H. C. 3rd. v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc. Natl. Acad. Sci. USA 86, 1168–1172 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andoniou, C. E., Thien, C. B. & Langdon, W. Y. Tumour induction by activated abl involves tyrosine phosphorylation of the product of the cbl oncogene. EMBO J. 13, 4515–4523 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sargin, B. et al. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood 110, 1004–1012 (2007). First description of a Cbl mutation in human cancer, correlating with impaired downregulation of the RTK FLT3.

    CAS  PubMed  Google Scholar 

  • Hoeller, D. et al. E3-independent monoubiquitination of ubiquitin-binding proteins. Mol. Cell 26, 891–898 (2007).

    CAS  PubMed  Google Scholar 

  • Grandal, M. V. et al. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes. Carcinogenesis 28, 1408–1417 (2007).

    CAS  PubMed  Google Scholar 

  • Han, W., Zhang, T., Yu, H., Foulke, J. G. & Tang, C. K. Hypophosphorylation of residue Y1045 leads to defective downregulation of EGFRvIII. Cancer Biol. Ther. 5, 1361–1368 (2006).

    CAS  PubMed  Google Scholar 

  • Shtiegman, K. et al. Defective ubiquitinylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene 26, 6968–6978 (2007).

    CAS  PubMed  Google Scholar 

  • Yang, S. et al. Association with HSP90 inhibits Cbl-mediated down-regulation of mutant epidermal growth factor receptors. Cancer Res. 66, 6990–6997 (2006).

    CAS  PubMed  Google Scholar 

  • Khan, E. M., Lanir, R., Danielson, A. R. & Goldkorn, T. Epidermal growth factor receptor exposed to cigarette smoke is aberrantly activated and undergoes perinuclear trafficking. FASEB J. 22, 910–917 (2008).

    CAS  PubMed  Google Scholar 

  • Abella, J. V. et al. Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol. Cell. Biol. 25, 9632–9645 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, S., Xu, Z., Lipkowitz, S. & Longley, J. B. Regulation of stem cell factor receptor signaling by Cbl family proteins (Cbl-b/c-Cbl). Blood 105, 226–232 (2005).

    CAS  PubMed  Google Scholar 

  • Bao, J., Gur, G. & Yarden, Y. Src promotes destruction of c-Cbl: implications for oncogenic synergy between Src and growth factor receptors. Proc. Natl Acad. Sci. USA 100, 2438–2443 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howlett, C. J. & Robbins, S. M. Membrane-anchored Cbl suppresses Hck protein-tyrosine kinase mediated cellular transformation. Oncogene 21, 1707–1716 (2002).

    CAS  PubMed  Google Scholar 

  • Yokouchi, M. et al. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J. Biol. Chem. 276, 35185–35193 (2001).

    CAS  PubMed  Google Scholar 

  • Tice, D. A., Biscardi, J. S., Nickles, A. L. & Parsons, S. J. Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc. Natl Acad. Sci. USA 96, 1415–1420 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Courbard, J. R. et al. Interaction between two ubiquitin-protein isopeptide ligases of different classes, CBLC and AIP4/ITCH. J. Biol. Chem. 277, 45267–45275 (2002).

    CAS  PubMed  Google Scholar 

  • Magnifico, A. et al. WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. J. Biol. Chem. 278, 43169–43177 (2003).

    CAS  PubMed  Google Scholar 

  • Wu, W. J., Tu, S. & Cerione, R. A. Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell 114, 715–725 (2003).

    CAS  PubMed  Google Scholar 

  • Fritz, G., Brachetti, C., Bahlmann, F., Schmidt, M. & Kaina, B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br. J. Cancer 87, 635–644 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, A. B. et al. hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr. Biol. 13, 308–314 (2003).

    CAS  PubMed  Google Scholar 

  • Rubin, C. et al. Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr. Biol. 13, 297–307 (2003).

    CAS  PubMed  Google Scholar 

  • Lo, T. L. et al. The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Res. 64, 6127–6136 (2004).

    CAS  PubMed  Google Scholar 

  • Kwabi-Addo, B. et al. The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res. 64, 4728–4735 (2004).

    CAS  PubMed  Google Scholar 

  • Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature Cell Biol. 4, 691–698 (2002).

    CAS  PubMed  Google Scholar 

  • Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003).

    CAS  PubMed  Google Scholar 

  • Legendre-Guillemin, V. et al. HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain. J. Biol. Chem. 277, 19897–19904 (2002).

    CAS  PubMed  Google Scholar 

  • Engqvist-Goldstein, A. E. et al. RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Mol. Biol. Cell 15, 1666–1679 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, D. S. et al. Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival. J. Clin. Invest. 110, 351–360 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley, S. V. et al. Huntingtin interacting protein 1 is a novel brain tumor marker that associates with epidermal growth factor receptor. Cancer Res. 67, 3609–3615 (2007).

    CAS  PubMed  Google Scholar 

  • Rao, D. S. et al. Altered receptor trafficking in Huntingtin Interacting Protein 1-transformed cells. Cancer Cell 3, 471–482 (2003).

    CAS  PubMed  Google Scholar 

  • Timpson, P., Lynch, D. K., Schramek, D., Walker, F. & Daly, R. J. Cortactin overexpression inhibits ligand-induced down-regulation of the epidermal growth factor receptor. Cancer Res. 65, 3273–3280 (2005).

    CAS  PubMed  Google Scholar 

  • Bankaitis, V. A., Johnson, L. M. & Emr, S. D. Isolation of yeast mutants defective in protein targeting to the vacuole. Proc. Natl Acad. Sci. USA 83, 9075–9079 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman, J. H., Hunter, C. P., Valls, L. A. & Stevens, T. H. Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene. Proc. Natl Acad. Sci. USA 83, 3248–3252 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond, C. K., Howald-Stevenson, I., Vater, C. A. & Stevens, T. H. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol. Biol. Cell 3, 1389–1402 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol. 3, 893–905 (2002).

    CAS  Google Scholar 

  • Bache, K. G. et al. The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor. Mol. Biol. Cell 17, 2513–2523 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doyotte, A., Russell, M. R., Hopkins, C. R. & Woodman, P. G. Depletion of TSG101 forms a mammalian 'Class E' compartment: a multicisternal early endosome with multiple sorting defects. J. Cell Sci. 118, 3003–3017 (2005).

    CAS  PubMed  Google Scholar 

  • Moberg, K. H., Schelble, S., Burdick, S. K. & Hariharan, I. K. Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev. Cell 9, 699–710 (2005).

    CAS  PubMed  Google Scholar 

  • Thompson, B. J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell 9, 711–720 (2005).

    CAS  PubMed  Google Scholar 

  • Vaccari, T. & Bilder, D. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev. Cell 9, 687–698 (2005).

    CAS  PubMed  Google Scholar 

  • Li, L. & Cohen, S. N. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85, 319–329 (1996).

    CAS  PubMed  Google Scholar 

  • Wagner, K. U. et al. Tsg101 is essential for cell growth, proliferation, and cell survival of embryonic and adult tissues. Mol. Cell Biol. 23, 150–162 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carstens, M. J., Krempler, A., Triplett, A. A., Van Lohuizen, M. & Wagner, K. U. Cell cycle arrest and cell death are controlled by p53-dependent and p53-independent mechanisms in Tsg101-deficient cells. J. Biol. Chem. 279, 35984–35994 (2004).

    CAS  PubMed  Google Scholar 

  • Zhu, G. et al. Reduction of TSG101 protein has a negative impact on tumor cell growth. Int. J. Cancer 109, 541–547 (2004).

    CAS  PubMed  Google Scholar 

  • Oh, K. B., Stanton, M. J., West, W. W., Todd, G. L. & Wagner, K. U. Tsg101 is upregulated in a subset of invasive human breast cancers and its targeted overexpression in transgenic mice reveals weak oncogenic properties for mammary cancer initiation. Oncogene 26, 5950–5959 (2007).

    CAS  PubMed  Google Scholar 

  • Xu, Z., Liang, L., Wang, H., Li, T. & Zhao, M. HCRP1, a novel gene that is downregulated in hepatocellular carcinoma, encodes a growth-inhibitory protein. Biochem. Biophys. Res. Commun. 311, 1057–1066 (2003).

    CAS  PubMed  Google Scholar 

  • Jones, M. C., Caswell, P. T. & Norman, J. C. Endocytic recycling pathways: emerging regulators of cell migration. Curr. Opin. Cell Biol. 18, 549–557 (2006).

    CAS  PubMed  Google Scholar 

  • Panetti, T. S. & McKeown-Longo, P. J. The αvβ5 integrin receptor regulates receptor-mediated endocytosis of vitronectin. J. Biol. Chem. 268, 11492–11495 (1993).

    CAS  PubMed  Google Scholar 

  • Bretscher, M. S. Endocytosis and recycling of the fibronectin receptor in CHO cells. EMBO J. 8, 1341–1348 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rappoport, J. Z. & Simon, S. M. Real-time analysis of clathrin-mediated endocytosis during cell migration. J. Cell Sci. 116, 847–855 (2003).

    CAS  PubMed  Google Scholar 

  • Roberts, M., Barry, S., Woods, A., van der Sluijs, P. & Norman, J. PDGF-regulated rab4-dependent recycling of αvβ3 integrin from early endosomes is necessary for cell adhesion and spreading. Curr. Biol. 11, 1392–1402 (2001).

    CAS  PubMed  Google Scholar 

  • Gustavsson, A. et al. Role of the β1-integrin cytoplasmic tail in mediating invasin-promoted internalization of Yersinia. J. Cell Sci. 115, 669–2678 (2002).

    Google Scholar 

  • Sanlioglu, S. et al. Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J. Virol. 74, 9184–9196 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezratty, E. J., Partridge, M. A. & Gundersen, G. G. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nature Cell Biol. 7, 581–590 (2005). An important study that provides novel insights into the regulation of cell migration by microtubule-dependent dissolution of focal adhesions.

    CAS  PubMed  Google Scholar 

  • Wu, X., Gan, B., Yoo, Y. & Guan, J. L. FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1–MMP and promotes ECM degradation. Dev. Cell 9, 185–196 (2005).

    CAS  PubMed  Google Scholar 

  • Nishimura, T. & Kaibuchi, K. Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev. Cell 13, 15–28 (2007). This paper shows that an endocytic adaptor, NUMB, has an important role in polarized cell migration through direct binding to β1 and β3 integrins and regulating integrin trafficking.

    CAS  PubMed  Google Scholar 

  • Upla, P. et al. Clustering induces a lateral redistribution of α2β1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Mol. Biol. Cell 15, 625–636 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caswell, P. & Norman, J. Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol. 18, 257–263 (2008).

    CAS  PubMed  Google Scholar 

  • Ivaska, J. et al. PKCɛ-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO J. 24, 3834–3845 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J. et al. An ACAP1-containing clathrin coat complex for endocytic recycling. J. Cell Biol. 178, 453–464 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powelka, A. M. et al. Stimulation-dependent recycling of integrin β1 regulated by ARF6 and Rab11. Traffic 5, 20–36 (2004).

    CAS  PubMed  Google Scholar 

  • Pellinen, T. et al. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of β1-integrins. J. Cell Biol. 173, 767–780 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    CAS  PubMed  Google Scholar 

  • Eliceiri, B. P. & Cheresh, D. A. Adhesion events in angiogenesis. Curr. Opin. Cell Biol. 13, 563–568 (2001).

    CAS  PubMed  Google Scholar 

  • Bates, R. C. et al. Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J. Clin. Invest. 115, 339–347 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hazelbag, S. et al. Overexpression of the αvβ6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J. Pathol. 212, 316–324 (2007).

    CAS  PubMed  Google Scholar 

  • Ramsay, A. G. et al. HS1-associated protein X-1 regulates carcinoma cell migration and invasion via clathrin-mediated endocytosis of integrin αvβ6. Cancer Res. 67, 5275–5284 (2007).

    CAS  PubMed  Google Scholar 

  • Cheng, K. W. et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nature Med. 10, 1251–1256 (2004). This manuscript demonstrates frequent amplification of RAB25 in advanced ovarian and breast cancers, as well as a crucial role for RAB25 in tumorigenesis.

    CAS  PubMed  Google Scholar 

  • De Craene, B. et al. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res. 65, 6237–6244 (2005).

    CAS  PubMed  Google Scholar 

  • Caswell, P. T. et al. Rab25 associates with α5β1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell 13, 496–510 (2007).

    CAS  PubMed  Google Scholar 

  • Garcia, M. J. et al. A 1 Mb minimal amplicon at 8p11–12 in breast cancer identifies new candidate oncogenes. Oncogene 24, 5235–5245 (2005).

    CAS  PubMed  Google Scholar 

  • Brown, J. M. The hypoxic cell: a target for selective cancer therapy — eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res. 59, 5863–5870 (1999).

    CAS  PubMed  Google Scholar 

  • Yoon, S. O., Shin, S. & Mercurio, A. M. Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the α6β4 integrin. Cancer Res. 65, 2761–2769 (2005). A report that links hypoxia to cell invasiveness through integrin trafficking, involving stabilized, detyrosinated microtubules and Rab11.

    CAS  PubMed  Google Scholar 

  • Mialhe, A. et al. Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res. 61, 5024–5027 (2001).

    CAS  PubMed  Google Scholar 

  • Cheng, K. W., Lahad, J. P., Gray, J. W. & Mills, G. B. Emerging role of RAB GTPases in cancer and human disease. Cancer Res. 65, 2516–2519 (2005).

    CAS  PubMed  Google Scholar 

  • Mor, O. et al. Molecular analysis of transitional cell carcinoma using cDNA microarray. Oncogene 22, 7702–7710 (2003).

    CAS  PubMed  Google Scholar 

  • Palamidessi, A. et al. Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134, 135–147 (2008). This study describes an interesting interplay between endocytosis and cell motility involving RAB5A-dependent activation of Rac in endosomes, and Rac recycling to regulate localized actin remodeling.

    CAS  PubMed  Google Scholar 

  • Raucher, D. et al. Phosphatidylinositol 4, 5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100, 221–228 (2000).

    CAS  PubMed  Google Scholar 

  • van Rheenen, J. et al. EGF-induced PIP2 hydrolysis releases and activates cofilin locally in carcinoma cells. J. Cell Biol. 179, 1247–1259 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malecz, N. et al. Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Curr. Biol. 10, 1383–1386 (2000).

    CAS  PubMed  Google Scholar 

  • Le, Q. T., Denko, N. C. & Giaccia, A. J. Hypoxic gene expression and metastasis. Cancer Metastasis Rev. 23, 293–310 (2004).

    CAS  PubMed  Google Scholar 

  • Winograd-Katz, S. E. & Levitzki, A. Cisplatin induces PKB/Akt activation and p38MAPK phosphorylation of the EGF receptor. Oncogene 25, 7381–7390 (2006).

    CAS  PubMed  Google Scholar 

  • Zwang, Y. & Yarden, Y. p38 MAP kinase mediates stress-induced internalization of EGFR: implications for cancer chemotherapy. EMBO J. 25, 4195–4206 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mace, G., Miaczynska, M., Zerial, M. & Nebreda, A. R. Phosphorylation of EEA1 by p38 MAP kinase regulates mu opioid receptor endocytosis. EMBO J. 24, 3235–3246 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalli, V. et al. The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex. Mol. Cell 7, 421–432 (2001).

    CAS  PubMed  Google Scholar 

  • Ben-Kasus, T., Schechter, B., Sela, M. & Yarden, Y. Cancer therapeutic antibodies come of age: targeting minimal residual disease. Mol. Oncol. 1, 42–54 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman, L. M. et al. Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc. Natl. Acad. Sci. USA 102, 1915–1920 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baselga, J. et al. Objective response rate in a phase II multicenter trial of pertuzumab (P), a HER2 dimerization inhibiting monoclonal antibody, in combination with trastuzumab (T) in patients (pts) with HER2-positive metastatic breast cancer (MBC) which has progressed during treatment with, T. J. Clin. Oncol. 2007 ASCO Annu. Meet. Proc. Pt I 25, 1004 (2007).

    Google Scholar 

  • Di Guglielmo, G. M., Baass, P. C., Ou, W. J., Posner, B. I. & Bergeron, J. J. Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J. 13, 4269–4277 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2088 (1996).

    CAS  PubMed  Google Scholar 

  • Teis, D., Wunderlich, W. & Huber, L. A. Localization of the MP1–MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev. Cell 3, 803–814 (2002).

    CAS  PubMed  Google Scholar 

  • Pennock, S. & Wang, Z. Stimulation of cell proliferation by endosomal epidermal growth factor receptor as revealed through two distinct phases of signaling. Mol. Cell Biol. 23, 5803–5815 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni, C. Y., Murphy, M. P., Golde, T. E. & Carpenter, G. γ-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294, 2179–2181 (2001).

    CAS  PubMed  Google Scholar 

  • Sardi, S. P., Murtie, J., Koirala, S., Patten, B. A. & Corfas, G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 127, 185–197 (2006).

    CAS  PubMed  Google Scholar 

  • Williams, C. C. et al. The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. J. Cell Biol. 167, 469–478 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo, H. W. et al. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin β1 and CRM1. J. Cell Biochem. 98, 1570–1583 (2006).

    CAS  PubMed  Google Scholar 

  • Wang, S. C. et al. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 6, 251–261 (2004).

    CAS  PubMed  Google Scholar 

  • Ristimaki, A. et al. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res. 62, 632–635 (2002).

    CAS  PubMed  Google Scholar 

  • Enari, M., Ohmori, K., Kitabayashi, I. & Taya, Y. Requirement of clathrin heavy chain for p53-mediated transcription. Genes Dev. 20, 1087–1099 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miaczynska, M. et al. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116, 445–456 (2004). This paper uncovers a novel mitogenic signalling pathway in which RAB5-activated APPL proteins translocate from endosomes to the nucleus and interact with proteins involved in nucleosome remodeling.

    CAS  PubMed  Google Scholar 

  • Abbas, S., Rotmans, G., Lowenberg, B. & Valk, P. J. Exon 8 splice site mutations in the gene encoding the E3-ligase CBL are associated with core binding factor acute myeloid leukemias. Haematologica 12 Aug 2008 (doi:10.3324/haematol.13187).

    CAS  PubMed  Google Scholar 

  • Caligiuri, M. A. et al. Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood 110, 1022–1024 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross, T. S., Bernard, O. A., Berger, R. & Gilliland, D. G. Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor β receptor (PDGFβR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood 91, 4419–4426 (1998).

    CAS  PubMed  Google Scholar 

  • Ahn, S. J. et al. Overexpression of βPix-a in human breast cancer tissues. Cancer Lett. 193, 99–107 (2003).

    CAS  PubMed  Google Scholar 

  • Buday, L. & Downward, J. Roles of cortactin in tumor pathogenesis. Biochim. Biophys. Acta 1775, 263–273 (2007).

    CAS  PubMed  Google Scholar 

  • Bridge, J. A. et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am. J. Pathol. 159, 411–415 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Argani, P. et al. A novel CLTC–TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene 22, 5374–5378 (2003).

    CAS  PubMed  Google Scholar 

  • Dreyling, M. H. et al. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc. Natl Acad. Sci. USA 93, 4804–4809 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • So, C. W., Lin, M., Ayton, P. M., Chen, E. H. & Cleary, M. L. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 4, 99–110 (2003).

    CAS  PubMed  Google Scholar 

  • Liu, H. et al. Functional contribution of EEN to leukemogenic transformation by MLL–EEN fusion protein. Oncogene 23, 3385–3394 (2004).

    CAS  PubMed  Google Scholar 

  • Lo, T. L. et al. Sprouty and cancer: the first terms report. Cancer Lett. 242, 141–150 (2006).

    CAS  PubMed  Google Scholar 

  • Karam, J. A. et al. Decreased DOC-2/DAB2 expression in urothelial carcinoma of the bladder. Clin. Cancer Res. 13, 4400–4406 (2007).

    CAS  PubMed  Google Scholar 

  • Colaluca, I. et al. NUMB controls p53 tumour suppressor activity. Nature 451, 76–80 (2008).

    CAS  PubMed  Google Scholar 

  • Bandyopadhyay, S. et al. The Drg-1 gene suppresses tumor metastasis in prostate cancer. Cancer Res. 63, 1731–1736 (2003).

    CAS  PubMed  Google Scholar 

  • van der Horst, E. H. et al. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc. Natl Acad. Sci. USA 102, 15901–15906 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, C. M. & Xu, Y. H. Down-regulated expression of atypical PKC-binding domain deleted asip isoforms in human hepatocellular carcinomas. Cell Res. 11, 223–229 (2001).

    CAS  PubMed  Google Scholar 

  • Shatz, M. & Liscovitch, M. Caveolin-1: a tumor-promoting role in human cancer. Int. J. Radiat. Biol. 84, 177–189 (2008).

    CAS  PubMed  Google Scholar