nature.com

Sphingosine 1-phosphate and cancer - Nature Reviews Cancer

  • ️Pyne, Susan
  • ️Thu Jun 17 2010
  • Pyne, S. & Pyne, N. J. Sphingosine 1-phosphate signalling in mammalian cells. Biochem. J. 349, 385–402 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegel, S. & Milstien, S. Sphingosine 1-phosphate: an enigmatic signalling lipid. Nature Rev. Mol. Cell Biol. 4, 397–407 (2003).

    Article  CAS  Google Scholar 

  • Ogretmen, B. & Hannun, Y. A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nature Rev. Cancer 4, 604–616 (2004).

    Article  CAS  Google Scholar 

  • Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nature Rev. Mol. Cell Biol. 9, 139–150 (2008).

    Article  CAS  Google Scholar 

  • Xia, P. et al. An oncogenic role of sphingosine kinase. Curr. Biol. 10, 1527–1530 (2000). This paper reports the first demonstration that SK1 increases V12 RAS-dependent transformation of NIH3T3 fibroblasts to form fibrosarcoma cells.

    Article  CAS  PubMed  Google Scholar 

  • Vadas, M., Xia, P., McCaughan, G. & Gamble, J. The role of sphingosine kinase-1 in cancer: oncogene or non-oncogene addiction. Biochim. Biophys. Acta 1781, 442–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Li, W. et al. Sphingosine kinase 1 is associated with gastric cancer progression and poor survival of patients. Clin. Cancer Res. 15, 1393–1399 (2009). This paper describes clinical evidence for a role of SK1 in disease progression and reduced survival in patients with gastric cancer.

    Article  CAS  PubMed  Google Scholar 

  • French, K. J. et al. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res. 63, 5962–5969 (2003). This paper identifies the first non-lipid inhibitors of SK.

    CAS  PubMed  Google Scholar 

  • Johnson, K. R. et al. Immunohistochemical distribution of sphingosine kinase 1 in normal and tumour lung tissue. J. Histochem. Cytochem. 53, 1159–1166 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Li, J. et al. Clinical significance of sphingosine kinase-1 expression in human astrocytomas progression and overall patient survival. Clin. Cancer Res. 14, 6996–7003 (2008). This paper reports clinical evidence for a role of SK1 in disease progression and reduced survival in cancer patients with astocytoma.

    Article  CAS  PubMed  Google Scholar 

  • Van Brocklyn, J. R. et al. Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J. Neuropathol. Exp. Neurol. 64, 695–705 (2005). This paper describes clinical evidence for a role of SK1 in reducing the survival of patients with glioma.

    Article  CAS  PubMed  Google Scholar 

  • Kohno, M. et al. Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol. Cell. Biol. 26, 7211–7223 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamori, T. et al. Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J. 23, 405–414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayerl, M. G. et al. Sphingosine kinase 1 protein and mRNA are overexpressed in non-Hodgkin lymphomas and are attractive targets for novel pharmacological interventions. Leuk. Lymphoma 49, 948–954 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Ruckäberle, E. et al. Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res. Treat 112, 41–52 (2008). This reports clinical evidence for a role of SK1 in reducing the survival of patients with breast cancer.

    Article  CAS  Google Scholar 

  • Erez-Roman, R., Pienik, R. & Futerman, A. H. Increased ceramide synthase 2 and 6 mRNA levels in breast cancer tissues and correlation with sphingosine kinase expression. Biochem. Biophys. Res. Commun. 391, 219–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Foekens, J. A. et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res. 60, 636–643 (2000).

    CAS  PubMed  Google Scholar 

  • Muracciole, X. et al. PAI-1 and EGFR expression in adult glioma tumours: toward a molecular prognostic classification. Int. J. Radiat. Oncol. Biol. Phys. 52, 592–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Paugh, B. S. et al. EGF regulates plasminogen activator inhibitor-1 (PAI-1) by a pathway involving c-Src, PKCδ and sphingosine kinase 1 in glioblastoma cells. FASEB J. 22, 455–465 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Xiao, Y. J., Baudhuin, L. M. & Schwartz, B. M. The role and clinical applications of bioactive lysolipids in ovarian cancer. J. Soc. Gynecol. Investig. 8, 1–13 (2001).

    Article  PubMed  Google Scholar 

  • Wang, D. et al. S1P differentially regulates migration of human ovarian cancer and human ovarian surface epithelial cells Mol. Cancer Ther. 7, 1993–2002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutphen, R. et al. Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol. Biomarkers Prev. 13, 1185–1191 (2004).

    CAS  PubMed  Google Scholar 

  • Takabe, K., Paugh, S. W., Milstien, S. & Spiegel, S. 'Inside-out' signalling of sphingosine-1-phosphate: therapeutic targets. Pharmacol. Rev. 60, 181–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Visentin, B. et al. Validation of an anti-sphingosine 1-phosphate antibody as a potential therapeutic in reducing growth, invasion and angiogenesis in multiple tumour lineages. Cancer Cell 9, 225–238 (2006). A report of the new therapeutic development of an S1P-specific antibody that may have applications in preventing tumour growth and neovascularization.

    Article  CAS  PubMed  Google Scholar 

  • Mitra, P. et al. Role of ABCC1 in export of sphingosine 1-phosphate from mast cells. Proc. Natl Acad. Sci. USA 103, 16394–16399 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato, K. et al. Critical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocytes. J. Neurochem. 103, 2610–2619 (2007).

    CAS  PubMed  Google Scholar 

  • Takabe, K. et al. Estradiol induces export of sphingosine-1-phosphate from breast cancer cells via ABCC1 and ABCG2. J. Biol. Chem. 285, 10477–10486 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y. M., Venkataraman, K., Hwang, S. I., Han, D. K. & Hla, T. A novel method to quantify sphingosine 1-phosphate by immobilized metal affinity chromatography (IMAC). Prostaglandins Other Lipid Mediat. 84, 154–162 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne, N. et al. The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signalling in zebrafish. Curr. Biol. 18, 1882–1888 (2008). This paper identifies an S1P transporter protein that is essential for the normal development of the zebrafish heart.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara, A. et al. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323, 524–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Taha, T. A., Hannun, Y. A. & Obeid, L. M. Sphingosine kinase: biochemical and cellular regulation and role in disease. J. Biochem. Mol. Biol. 39, 113–131 (2006).

    CAS  PubMed  Google Scholar 

  • Alemany, R., van Koppen, C. J., Danneberg, K., Ter Braak, M. & Meyer Zu Heringdorf, D. Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch. Pharmacol. 374, 413–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Pyne, S., Lee, S. C., Long, J. & Pyne, N. J. Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell Signal. 21, 14–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Pitson, S. M. et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22, 5491–5500 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitson, S. M. et al. Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J. Exp. Med. 201, 49–54 (2005). This was the first study to show that the re-localization of SK1 from the cytoplasm to the plasma membrane of cells is required for the transformation of NIH3T3 fibroblasts to form fibrosarcoma cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahelin, R. V. et al. The mechanism of membrane targeting of human sphingosine kinase 1. J. Biol. Chem. 280, 43030–43038 (2005). This paper identifies SK1–phosphatidylserine interaction at the plasma membrane.

    Article  CAS  PubMed  Google Scholar 

  • Olivera, A., Rosenthal, J. & Spiegel, S. Effect of acidic phospholipids on sphingosine kinase. J. Cell. Biochem. 60, 529–537 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Su, W., Chen, Q. & Frohman, M. A. Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future. Oncol. 5, 1477–1486 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Melendez, A. J. & Khaw, A. K. Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J. Biol. Chem. 277, 17255–17262 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Smith, R. E. et al. A novel MyD-1 (SIRP-1α) signalling pathway that inhibits LPS-induced TNFα production by monocytes. Blood 102, 2532–2540 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Delon, C. et al. Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J. Biol. Chem. 279, 44763–44774 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Long, J. S. et al. The regulation of cell survival by lipid phosphate phosphatases involves the modulation of intracellular phosphatidic acid and sphingosine 1-phosphate pools. Biochem. J. 391, 25–32 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, P. et al. Sphingosine kinase interacts with TRAF2 and dissects tumour necrosis factor-α signalling. J. Biol. Chem. 277, 7996–8003 (2002). This was the first identification of a protein–protein interaction involving SK1.

    Article  CAS  PubMed  Google Scholar 

  • Bergom, C., Gao, C. & Newman, P. J. Mechanisms of PECAM-1-mediated cytoprotection and implications for cancer cell survival. Leuk. Lymphoma 46, 1409–1421 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Limaye, V. et al. Sphingosine kinase-1 enhances endothelial cell survival through a PECAM-1-dependent activation of PI-3K/AKT and regulation of Bcl-2 family members. Blood 105, 3169–3177 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Maceyka, M., Nava, V. E., Milstien, S. & Spiegel, S. Aminoacylase 1 is a sphingosine kinase 1-interacting protein. FEBS Lett. 568, 30–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Zhong, Y. et al. Genome-wide analysis identifies a tumour suppressor role for aminoacylase 1 in iron-induced rat renal cell carcinoma. Carcinogenesis 30, 158–164 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Thornton, S., Anand, N., Purcell, D. & Lee, J. Not just for housekeeping: protein initiation and elongation factors in cell growth and tumourigenesis. J. Mol. Med. 81, 536–548 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Leclercq, T. M., Moretti, P. A., Vadas, M. A. & Pitson, S. M. Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. J. Biol. Chem. 283, 9606–9614 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarman, K. E., Moretti, P. A., Zebol, J. R. & Pitson, S. M. Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J. Biol. Chem. 285, 483–492 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Maceyka, M. et al. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J. Biol. Chem. 280, 37118–37129 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Igarashi, N. et al. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J. Biol. Chem. 278, 46832–46839 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Ding, G. et al. Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. J. Biol. Chem. 282, 27493–27502 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Don, A. S. & Rosen, H. A lipid binding domain in sphingosine kinase 2. Biochem. Biophys. Res. Commun. 380, 87–92 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H. et al. Sphingosine kinase type 2 is a putative BH-3 only protein that induces apoptosis. J. Biol. Chem. 278, 40330–40336 (2003). First demonstration of the pro-apoptotic function of SK2.

    Article  CAS  PubMed  Google Scholar 

  • Sankala, H. M. et al. Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res. 67, 10466–10474 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hait, N. C., Bellamy, A., Milstien, S., Kordula, T. & Spiegel. S. Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. J. Biol. Chem. 282, 12058–12065 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Weigert, A. et al. Sphingosine kinase 2 deficient tumour xenografts show impaired growth and fail to polarize macrophages towards an anti-inflammatory phenotype. Int. J. Cancer. 125, 2114–2121 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Hait, N. C. et al. Regulation of histone acetylation in the nucleus by sphingosine 1-phosphate. Science 325, 1254–1257 (2009). This paper reports a novel interaction of S1P with the intracellular target HDAC regulating the epigenetic control of cell cycle progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allende, M. L. et al. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J. Biol. Chem. 279, 52487–52492 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Mizugishi, M. et al. Essential role for sphingosine kinase in neural and vascular development. Mol. Cell. Biol. 25, 11113–11121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuvillier, O. et al. Suppression of ceramide-mediated programmed cell death by sphingosine 1-phosphate. Nature 381, 800–803 (1996). This was the first demonstration of the ceramide–sphingosine–S1P rheostat.

    Article  CAS  PubMed  Google Scholar 

  • Heinrich, M. et al. Ceramide as an activator lipid of cathepsin D. Adv. Exp. Med. Biol. 477, 305–315 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Wang, G. et al. Direct binding to ceramide activates protein kinase Cζ before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J. Biol. Chem. 280, 26415–26424 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Fox, T. E. et al. Ceramide recruits and activates protein kinase C ζ (PKC ζ) within structured membrane microdomains. J. Biol. Chem. 282, 12450–12457 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sauer, B. et al. Sphingosine 1-phosphate is involved in cytoprotective actions of calcitriol in human fibroblasts and enhances the intracellular Bcl-2/Bax rheostat. Pharmazie 60, 298–304 (2005).

    CAS  PubMed  Google Scholar 

  • Li, Q. F., Wu, C. T., Guo, Q., Wang, H. & Wang, L. S. Sphingosine 1-phosphate induces Mcl-1 upregulation and protects multiple myeloma cells against apoptosis. Biochem. Biophys. Res. Commun. 371, 159–162 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Avery, K., Avery, S., Shepherd, J., Heath, P. R. & Moore, H. Sphingosine-1-phosphate mediates transcriptional regulation of key targets associated with survival, proliferation, and pluripotency in human embryonic stem cells. Stem Cells Dev. 17, 1195–1205 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Betito, S. & Cuvillier, O. Regulation by sphingosine 1-phosphate of Bax and Bad activities during apoptosis in a MEK-dependent manner. Biochem. Biophys. Res. Commun. 340, 1273–1277 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Jürgensmeier, J. M. et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl Acad. Sci. USA 95, 4997–5002 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonhoure, E. et al. Sphingosine kinase-1 is a downstream regulator of imatinib-induced apoptosis in chronic myeloid leukaemia cells. Leukemia 22, 971–979 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Bektas, M. et al. Sphingosine kinase activity counteracts ceramide-mediated cell death in human melanoma cells: role of Bcl-2 expression. Oncogene 24, 178–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Akao, Y. et al. High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC-3 cells and their camptothecin-induced up-regulation. Biochem. Biophys. Res. Commun. 342, 1284–1290 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Pchejetski, D. et al. Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res. 65, 11667–11675 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Guillermet-Guibert, J. et al. Targeting the sphingolipid metabolism to defeat pancreatic cancer resistance to the chemotherapeutic gemcitabine drug. Mol. Cancer Res. 8, 809–820 (2009).

    CAS  Google Scholar 

  • Baran, Y. et al. Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukaemia cells. J. Biol. Chem. 282, 10922–10934 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sobue, S. et al. Implications of sphingosine kinase 1 expression level for the cellular sphingolipid rheostat: relevance as a marker for daunorubicin sensitivity of leukaemia cells. Int. J. Haematol. 87, 266–275 (2008).

    Article  CAS  Google Scholar 

  • Nava, V. E., Hobson, J. P., Murthy, S., Milstien, S. & Spiegel, S. Sphingosine kinase type 1 promotes estrogen-dependent tumourigenesis of breast cancer MCF-7 cells. Exp. Cell Res. 281, 115–127 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kohno, M. et al. Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol. Cell. Biol. 26, 7211–7223 (2006). This was the first identification of a potential intracellular role for SK1 in intestinal adenoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pchejetski, D. et al. Chemosensitizing effects of sphingosine kinase-1 inhibition in prostate cancer cell and animal models. Mol. Cancer Ther. 7, 1836–1845 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Nava, V. E. et al. Sphingosine enhances apoptosis of radiation-resistant prostate cancer cells. Cancer Res. 60, 4468–4474 (2000).

    CAS  PubMed  Google Scholar 

  • Yamashita, H. et al. Sphingosine 1-phosphate receptor expression profile in human gastric cancer cells: differential regulation on the migration and proliferation. J. Surg. Res. 130, 80–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Arikawa, K. et al. Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. Requirement of inhibition of cellular Rac activity. J. Biol. Chem. 278, 32841–32851 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Yamamura, S., Hakomori, S., Wada, A. & Igarashi, Y. Sphingosine 1-phosphate inhibits haptotactic motility by overproduction of focal adhesion sites in B16 melanoma cells through EDG-induced activation of Rho. Ann. NY Acad. Sci. 905, 301–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Malchinkhuu, E. et al. S1P2 receptors mediate inhibition of glioma cell migration through Rho signalling pathways independent of PTEN. Biochem. Biophys. Res. Comm. 366, 963–968 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Sanchez, T. et al. Induction of vascular permeability by the sphingosine 1-phosphate receptor-2 (S1PR2) and its downstream effectors ROCK and PTEN. Atheroscler. Thromb. Vasc. Biol. 27, 1312–1318 (2007).

    Article  CAS  Google Scholar 

  • Fisher, K. E. et al. Tumour cell invasion of collagen matrices requires coordinate lipid agonist-induced G protein and membrane-type matrix metalloproteinase-1-dependent signalling. Mol. Cancer 5, 69 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nyalendo, C. et al. Src-dependent phosphorylation of membrane type I matrix metalloproteinase on cytoplasmic tyrosine 573: role in endothelial and tumour cell migration. J. Biol. Chem. 282, 15690–15699 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Park, K. S. et al. S1P stimulates chemotactic migration and invasion in OVCAR3 ovarian cancer cells. Biochem. Biophys. Res. Comm. 356, 239–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Young, N. & Van Brocklyn, J. R. Roles of sphingosine 1-phosphate (S1P) receptors in malignant behaviour of glioma cells. Differential effects of S1P2 on cell migration and invasiveness. Exp. Cell Res. 313, 1615–1627 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers, A. et al. Sphingosine 1-phosphate regulation of extracellular signal-regulated kinase-1/2 in embryonic stem cells. Stem Cells Dev. 18, 1319–1330 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, Y. et al. The expression level of sphingosine-1-phosphate receptor type 1 is related to MIB-1 labeling index and predicts survival of glioblastoma patients. J. Neurooncol. 98, 41–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Kothapalli, R., Kusmartseva, I. & Loughran, T. P. Characterization of a human sphingosine-1-phosphate receptor gene (S1P5) and its differential expression in LGL leukemia. Biochim. Biophys. Acta 1579, 117–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Cattoretti, G. et al. Targeted disruption of the S1P2 sphingosine 1-phosphate receptor gene leads to diffuse large B-cell lymphoma formation. Cancer Res. 69, 8686–8692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Stunff, H. et al. Role of sphingosine-1-phosphate phosphatase 1 in epidermal growth factor-induced chemotaxis. J. Biol. Chem. 279, 34290–34297 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, H. L. et al. Sphingosine 1-phosphate induces EGFR expression via AKT/NF-κB and ERK/AP-1 pathways in rat vascular smooth muscle cells. J. Cell Biochem. 103, 1732–1746 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Shida, D. et al. Sphingosine 1-phosphate transactivates c-Met as well as epidermal growth factor receptor (EGFR) in human gastric cancer cells. FEBS Lett. 577, 333–338 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Sukocheva, O. et al. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J. Cell Biol. 173, 301–310 (2006). This was the first example of so-called 'criss-cross' transactivation linking ER with SK1/S1P and EGFR transactivation in breast cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, J. L., Lin, M. Z., McGowan, E. M. & Baxter, R. C. Potentiation of growth factor signalling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity. J. Biol. Chem. 284, 25542–25552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shida, D. et al. Lysophospholipids transactivate HER2/neu (erbB-2) in human gastric cancer cells. Biochem. Biophys. Res. Comm. 327, 907–914 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Maceyka, M., Alvarez, S. E., Milstien, S. & Spiegel, S. Filamin A links sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 at lamellipodia to orchestrate cell migration. Mol. Cell. Biol. 28, 5687–5697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobson, J. P. et al. Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 291, 1800–1803 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeldt, H. M. et al. EDG-1 links the PDGF receptor to Src and focal adhesion kinase activation leading to lamellipodia formation and cell migration. FASEB J. 15, 2649–2659 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Baudhuin, L. M. et al. S1P3-mediated AKT activation and cross-talk with platelet-derived growth factor receptor (PDGFR). FASEB J. 18, 341–343 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Alderton, F. et al. Tethering of the platelet-derived growth factor beta receptor to G-protein coupled receptors: a novel platform for integrative signalling by these receptor classes in mammalian cells. J. Biol. Chem. 276, 28578–28585 (2001). This was the first demonstration of 'GPCR jacking involving a S1P 1 receptor and PDGFR regulating cell motility.

    Article  CAS  PubMed  Google Scholar 

  • Waters, C. et al. Sphingosine 1-phosphate and platelet-derived growth factor (PDGF) act via PDGFβ receptor-sphingosine 1-phosphate receptor complexes in airway smooth muscle. J. Biol. Chem. 278, 6282–6290 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Waters, C. M. et al. Cell migration activated by platelet-derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1-phosphate receptor-1. FASEB J. 20, 509–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Long, J. S., Natarajan, V., Tigyi, G., Pyne, S. & Pyne, N. J. The functional PDGFβ receptor-S1P1 receptor signalling complex is involved in regulating migration of mouse embryonic fibroblasts in response to platelet derived growth factor. Prostaglandins Other Lipid Mediat. 80, 1920–1929 (2006).

    Article  CAS  Google Scholar 

  • Pyne, N. J. & Pyne, S. Sphingosine 1-phosphate, lysophosphatidic acid and growth factor signalling and termination. Biochim. Biophys. Acta 1781, 467–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Delcourt, N., Bockaert, J. & Marin, P. GPCR-jacking: from a new route in RTK signalling to a new concept in GPCR activation. Trends Pharmacol. Sci. 28, 602–607 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Chae, S. S., Paik, J. H., Furneaux, H. & Hla, T. Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J Clin. Invest. 114, 1082–1089 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, W., Shu, X., Hovsepyan, H., Mosteller, R. D. & Broek, D. VEGF receptor expression and signalling in human bladder tumours. Oncogene 22, 3361–3370 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi, K. et al. Sprouty4 deficiency potentiates Ras-independent angiogenic signals and tumour growth. Cancer Sci. 100, 1648–1654 (2009). This paper reports the first evidence for crosstalk regulation between VEGF, S1P and sprouty 4 and modulation of Ras-independent signalling and angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  • Shida, D. et al. Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res. 68, 6569–6577 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukocheva, O., Wang, L. Verrier, E., Vadas, M. A. & Xia, P. Restoring endocrine response in breast cancer cells by inhibition of the sphingosine kinase-1 signalling pathway. Endocrinology 150, 4484–4492 (2009). This was the first demonstration of role for SK1 in the induction of tamoxifen resistance.

    Article  CAS  PubMed  Google Scholar 

  • Rayala, S. K. & Kumar, R. Sliding p21-activated kinase 1 to nucleus impacts Tamoxifen sensitivity. Biomed. Pharmacother. 61, 408–411 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Dayon, A. et al. Sphingosine kinase-1 is central to androgen-regulated prostate cancer growth and survival PLoS ONE 4, e8408 (2009).

    Article  CAS  Google Scholar 

  • Murillo, H., Huang, H. J., Schmidt, L. J., Smith, D. I. & Tindall, D. J. Role of PI3K signalling in survival and progression of LNCaP prostate cancer cells to the androgen refractory state. Endocrinology 142, 4795–4805 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Lin, H. K. et al. Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/AKT pathway in prostate cancer LNCaP cells with different passage numbers. J. Biol. Chem. 278, 50902–50907 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, M., Long. J. S., Pyne, N. J. & Pyne. S. The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen activated protein kinase signalling in human pulmonary smooth muscle cells. Prostaglandins Other Lipid Mediat. 79, 278–286 (2006). This was the first evidence to demonstrate the hypoxic-dependent regulation of SK1 and SK2 gene expression.

    Article  CAS  PubMed  Google Scholar 

  • Schwalm, S. et al. Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells. Biochim. Biophys. Res. Commun. 368, 1020–1025 (2008). This paper identifies two hypoxic responsive elements in the SK1 gene promoter.

    Article  CAS  Google Scholar 

  • Anelli, V., Gault, C. R., Cheng, A. B. & Obeid, L. M. Sphingosine kinase is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. J. Biol. Chem. 283, 3365–3375 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Ader, I., Brizuela, L., Bouquerel, P., Malavaud, B. & Cuvillier, O. Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Res. 68, 8635–8642 (2008). This paper reports evidence for a role of SK1 in regulating HIF1α expression.

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer, S. E., Weigert, A., Zhou, J. & Brüne, B. Hypoxia enhances sphingosine kinase 2 activity and provokes sphingosine 1-phosphate-mediated chemoresistance in A549 lung cancer cells. Mol. Cancer Res. 7, 393–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Chen, N. & Karantza-Wadsworth, V. Role and regulation of autophagy in cancer. Biochim. Biophys. Acta 1793, 1516–1523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavieu, G. et al. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J. Biol. Chem. 281, 8518–8527 (2006). This paper reports evidence of a role for SK1 in autophagic survival.

    Article  CAS  PubMed  Google Scholar 

  • French, K. J. et al. Pharmacology and antitumor activity of ABC294640, a selective inhibitor of sphingosine kinase-2. J. Pharmacol. Exp. Ther. 333, 129–139 (2010). This paper identified the first SK2-selective inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French, K. J. et al. Antitumour activity of sphingosine kinase inhibitors. J. Pharmacol. Exp. Ther. 318, 596–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Beljanski, V., Knaak, C. & Smith, C. D. A novel sphingosine kinase inhibitor induces autophagy in tumour cells. J. Pharmacol. Exp. Ther. 333, 454–464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, C. L. et al. S1P5 is required for sphingosine 1-phosphate-induced autophagy in human prostate PC-3 cells. Am. J. Physiol., Cell Physiol. 297, C451–C458 (2009).

    Article  CAS  Google Scholar 

  • Oskouian, B. et al. Sphingosine 1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proc. Natl Acad. Sci. USA 103, 17384–17389 (2006). This was the first demonstration that SPL is downregulated in colon cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nature Genet. 33, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hibbs, K. et al. Differential gene expression in ovarian carcinoma: identification of potential biomarkers. Am. J. Pathol. 165, 397–314 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardini, M. et al. High-resolution mapping of genomic imbalance and identification of gene expression profiles associated with differential chemotherapy response in serous epithelial ovarian cancer. Neoplasia 7, 603–613 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min, J. et al. Sphingosine 1-phosphate lyase regulates sensitivity of human cells to select chemotherapy drugs in a p38-dependent manner. Mol. Cancer. Res. 3, 287–296 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kawamori, T. et al. Sphingosine kinase 1 is up-regulated in colon carcinogenesis. FASEB J. 20, 386–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Johnson, K. R. et al. Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. J. Biol. Chem. 278, 34541–34547 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Mechtcheriakova, D. et al. Sphingosine 1-phosphate phosphatase 2 is induced during inflammatory responses. Cell. Signal. 19, 748–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Pettus, B. J. et al. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-α. FASEB J. 17, 1411–1421 (2003). This paper reports evidence that S1P mediates the TNFα-induced production of inflammatory mediators.

    Article  CAS  PubMed  Google Scholar 

  • Maines, L. W. et al. Suppression of ulcerative colitis in mice by orally available inhibitors of sphingosine kinase. Dig. Dis. Sci. 53, 997–1012 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Snider, A. J. et al. A role for sphingosine kinase 1 in dextran sulfate sodium-induced colitis. FASEB J. 23, 143–152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Brien, N. et al. Production and characterisation of monoclonal anti-sphingosine 1-phosphate antibodies. J. Lipid Res. 50, 2245–2257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo. K., Igarashi, Y., Nisar, M., Zhou, Q. H. & Hakomori, S. Cell membrane signalling as target in cancer therapy: inhibitory effect of N, N-dimethyl and N, N, N-trimethyl sphingosine derivatives on in vitro and in vivo growth of human tumor cells in nude mice. Cancer Res. 51, 1613–1618 (1991).

    CAS  PubMed  Google Scholar 

  • Okoshi, H. et al. Cell membrane signalling as target in cancer therapy. II: inhibitory effect of N, N, N-trimethylsphingosine on metastatic potential of murine B16 melanoma cell line through blocking of tumor cell-dependent platelet aggregation. Cancer Res. 51, 6019–6024 (1991).

    CAS  PubMed  Google Scholar 

  • Kedderis, L. B. et al. Toxicity of the protein kinase C inhibitor safingol administered alone and in combination with chemotherapeutic agents. Fundam. Appl. Toxicol. 25, 201–217 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Igarashi, Y. et al. Effect of chemically well-defined sphingosine and its N-methyl derivatives on protein kinase C and src kinase activities. Biochemistry 28, 6796–6800 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Sugiura, M. et al. Ceramide kinase, a novel lipid kinase. Molecular cloning and functional characterization. J. Biol. Chem. 277, 23294–23300 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Megidish, T. et al. The signal modulator protein 14-3-3 is a target of sphingosine- or N, N-dimethylsphingosine-dependent kinase in 3T3(A31) cells. Biochem. Biophys. Res. Commun. 216, 739–747 (1995).

    Article  CAS  PubMed  Google Scholar 

  • King, C. C. et al. Sphingosine is a novel activator of 3-phosphoinositide-dependent kinase 1. J. Biol. Chem. 275, 18108–18113 (2000).

    Article  CAS  PubMed  Google Scholar 

  • McDonald, O. B., Hannun, Y. A., Reynolds, C. H. & Sahyoun, N. Activation of casein kinase II by sphingosine. J. Biol. Chem. 266, 21773–21776 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, G. K. et al. A pilot clinical/pharmacological study of the protein kinase C-specific inhibitor safingol alone and in combination with doxorubicin. Clin. Cancer Res. 3, 537–543 (1997).

    CAS  PubMed  Google Scholar 

  • Gamble, J. R. et al. Phenoxodiol, an experimental anticancer drug, shows potent antiangiogenic properties in addition to its antitumour effects. Int. J. Cancer 118, 2412–2420 (2006).

    Article  CAS  PubMed  Google Scholar 

  • De Luca, T., Morré, D. M., Zhao, H. & Morré, D. J. NAD+/NADH and/or CoQ/CoQH2 ratios from plasma membrane electron transport may determine ceramide and sphingosine-1-phosphate levels accompanying G1 arrest and apoptosis. Biofactors 25, 43–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Paugh, S. W. et al. A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukaemia. Blood 112, 1382–1391 (2008). This paper identifiedthe first SK1-selective inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapitonov, D. et al. Targeting sphingosine kinase 1 inhibits AKT signalling, induces apoptosis, and suppresses growth of human glioblastoma cells and xenografts. Cancer Res. 69, 6915–6923 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, L., Tan, S. S., Lam, Y. & Melendez, A. J. Synthesis and evaluation of sphingosine analogues as inhibitors of sphingosine kinases. J. Med. Chem. 52, 3618–3626 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Xiang, Y. et al. Discovery of novel sphingosine kinase 1 inhibitors. Bioorg. Med. Chem. Lett. 19, 6119–6121 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Kono, K., Tanaka, M., Ogita, T & Kohama, T. Characterisation of B-5354c, a new sphingosine kinase inhibitor, produced by a marine bacterium. J. Antibiot. (Tokyo) 53, 759–764 (2000).

    Article  CAS  Google Scholar 

  • Kono. K., Tanaka, M., Ogita, T., Hosoya, T. & Koyama, T. F-12509A, a new sphingosine kinase inhibitor, produced by a discomycete. J. Antibiot. (Tokyo) 53, 12459–12466 (2000).

    Google Scholar 

  • Kono, K. et al. S.-15183a and b, new sphingosine kinase inhibitors, produced by a fungus. J. Antibiot. (Tokyo) 54, 415–420 (2001).

    Article  CAS  Google Scholar 

  • Huwiler, A. & Pfeilschifter, J. New players on the center stage: sphingosine 1-phosphate and its receptors as drug targets. Biochem. Pharmacol. 75, 1893–1900 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Sanchez, T. et al. Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J. Biol. Chem. 278, 47281–47290 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann, V. et al. The immune modulator FTY720 targets sphingosine 1-phosphatereceptors. J. Biol. Chem. 277, 21453–21457 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Gräler, M. H. & Goetzl, E. J. The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G protein-coupled receptors. FASEB J. 18, 551–553 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  PubMed  Google Scholar 

  • van Meeteren, L. A., Brinkmann, V., Saulnier-Blache, J. S., Lynch, K. R. & Moolenaar, W. H. Anticancer activity of FTY720: phosphorylated FTY720 inhibits autotaxin, a metastasis-enhancing and angiogenic lysophospholipase D. Cancer Lett. 266, 203–208 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne, S. G. et al. The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 109, 1077–1085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandhuvula, P., Tam, Y. Y., Oskouian, B. & Saba, J. D. The immune modulator FTY720 inhibits sphingosine 1-phosphate lyase activity. J. Biol. Chem. 280, 33697–33700 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Vessey, D. A. et al. Dimethylsphingosine and FTY720 inhibit the SK1 form but activate the SK2 form of sphingosine kinase from rat heart. J. Biochem. Mol. Toxicol. 21, 273–279 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Lahiri, S., Park, H., Laviad, E. L., Bittman, R. & Futerman, A. H. Ceramide synthesis is modulated by the sphingosine analogue FTY720 via a mixture of uncompetitive and noncompetitive inhibition of acyl-CoA chain length dependent manner. J. Biol. Chem. 284, 16090–16098 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berdyshev, E. V. et al. FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. J. Biol. Chem. 284, 5467–5477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neviani, P. et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J. Clin. Invest. 117, 2408–2421 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka, Y., Nagahara, Y., Ikekita, M. & Shinomiya, T. A novel immunosuppressive agent FTY720 induced AKT dephosphorylation in leukemia cells. Br. J. Pharmacol. 138, 1303–1312 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azuma, H. et al. Selective cancer cell apoptosis induced by FTY720: evidence for a Bcl-dependent pathway and impairment in ERK activity. Anticancer Res. 23, 3183–3193 (2003).

    CAS  PubMed  Google Scholar 

  • LaMontagne, K. et al. Antagonism of sphingosine 1-phosphate receptors by FTY720 inhibits angiogenesis and tumour vascularisation. Cancer Res. 66, 221–231 (2006). This paper demonstrates that FTY720 regresses tumour growth and promotes apoptosis through a mechanism involving the functional antagonism of S1P 1 in endothelial cells, thereby preventing neovascularization of the tumour.

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka, Y., Otsuki, K., Fujita, T. & Uesato, S. Effects of phosphorylation of immunomodulatory agent FTY720 (fingolimod) on antiproliferative activity against breast cancer and colon cancer cells. Biol. Pharm. Bull. 31, 1177–1181 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Schmid, G. et al. The immunosuppressant FTY720 inhibits tumor angiogenesis via the sphingosine 1-phosphate receptor 1. J. Cell. Biochem. 101, 259–270 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Chun, J. et al. International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol. Rev. 54, 265–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y. et al. Sphingosine-1-phosphate receptor type 1 regulates glioma cell proliferation and correlates with patient survival. Int. J. Cancer. 126, 2341–2352 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Kothapalli R., Kusmartseva I. & Loughran TP. Characterization of a human sphingosine-1-phosphate receptor gene (S1P5) and its differential expression in LGL leukemia. Biochim. Biophys. Acta 1579, 117–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kohama, T. et al. Molecular cloning and functional characterization of murine sphingosine kinase. J. Biol. Chem. 273, 23722–23728 (1998). This paper reports the first cloning of the SK1 isoform.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H. et al. Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J. Biol. Chem. 275, 19513–19520 (2000). This paper reports the first cloning of the SK2 isoform.

    Article  CAS  PubMed  Google Scholar 

  • Sweeney, E. A. et al. Sphingosine and its methylated derivative N, N-dimethylsphingosine (DMS) induce apoptosis in a variety of human cancer cell lines. Int. J. Cancer 66, 358–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Shirahama, T. et al. In vitro and in vivo induction of apoptosis by sphingosine and N, N-dimethylsphingosine in human epidermoid carcinoma KB-3-1 and its multidrug-resistant cells. Clin. Cancer Res. 3, 257–264 (1997).

    CAS  PubMed  Google Scholar 

  • Cuvillier, O. & Levade, T. Sphingosine 1-phosphate antagonises apoptosis of human leukaemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria. Blood 98, 2828–2836 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Sachs, C. W., Safa, A. R., Harrison, S. D. & Fine, RL . Partial inhibition of multidrug resistance by safingol is independent of modulation of P-glycoprotein substrate activities and correlated with inhibition of protein kinase C. J. Biol. Chem. 270, 26639–26648 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Maines, L. W., Fitzpatrick, L. R., Green, C. L., Zhuang, Y. & Smith, C. D. Efficacy of a novel sphingosine kinase inhibitor in experimental Crohn's disease Inflammopharmacology 18, 73–85 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Kono, K., Sugiura, M. & Kohama T . Inhibition of recombinant sphingosine kinases by novel inhibitors of microbial origin, F-12509A and B-5354c. J. Antibiot. (Tokyo) 55, 99–103 (2002).

    Article  CAS  Google Scholar 

  • Bonhoure, E. et al. Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 20, 95–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Mathews, T. P. et al. Discovery, biological evaluation, and structure-activity relationship of amidine based sphingosine kinase inhibitors. J. Med. Chem. 53, 2766–2778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, M. D., Clemens, J. J., Macdonald, T. L. & Lynch, K. R. Sphingosine 1-phosphate analogs as receptor antagonists. J. Biol. Chem. 280, 9833–9841 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Sanna, M. G. et al. Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nature Chem. Biol. 2, 434–441 (2006).

    Article  CAS  Google Scholar 

  • Wang, J. D. et al. Early induction of apoptosis in androgen-independent prostate cancer cell line by FTY720 requires caspase-3 activation. Prostate 40, 50–55 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Ubai, T. et al. FTY720 induced Bcl-associated and Fas-independent apoptosis in human renal cancer cells in vitro and significantly reduced in vivo tumour growth in mouse xenograft. Anticancer Res. 27, 75–88 (2007).

    CAS  PubMed  Google Scholar 

  • Hung., J. H. et al. FTY720 induces apoptosis in hepatocellular carcinoma cells through activation of protein kinase C delta signalling. Cancer Res. 68, 1204–1212 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Azuma, H. et al. Induction of apoptosis in human bladder cancer cells in vitro and in vivo caused by FTY720 treatment. J. Urol. 169, 2372–2377 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Lee, T. K. et al. FTY720 induces apoptosis of human hepatoma cell lines through PI3-K-mediated AKT dephosphorylation. Carcinogenesis 25, 2397–2405 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Billich, A. et al. Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J. Biol. Chem. 278, 47408–47415 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Chua, C. W. et al. FTY720, a fungus metabolite, inhibits in vivo growth of androgen-independent prostate cancer. Int. J. Cancer. 117, 1039–1048 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Azuma, H. et al. Marked prevention of tumor growth and metastasis by a novel immunosuppressive agent, FTY720, in mouse breast cancer models. Cancer Res. 62, 1410–1419 (2002).

    CAS  PubMed  Google Scholar 

  • Ho, J. W. et al. Effects of a novel immunomodulating agent, FTY720, on tumor growth and angiogenesis in hepatocellular carcinoma. Mol. Cancer Ther. 4, 1430–1438 (2005).

    Article  CAS  PubMed  Google Scholar