nature.com

The mighty mouse: genetically engineered mouse models in cancer drug development - Nature Reviews Drug Discovery

  • ️DePinho, Ronald A.
  • ️Fri Aug 18 2006
  • Leaf, C. Why we're losing the war on cancer: and how to win it. Fortune 149, 77–92 (2004).

    Google Scholar 

  • National Cancer Institute. Cancer Trends Progress Report [online] (2005).

  • Weiss, A. J. et al. Phase II study of 5-azacytidine in solid tumors. Cancer Treat. Rep. 61, 55–58 (1977).

    CAS  PubMed  Google Scholar 

  • Lomen, P. L., Khilanani, P. & Kessel, D. Phase I study using combination of hydroxyurea and 5-azacytidine (NSC-102816). Neoplasma 27, 101–106 (1980).

    CAS  PubMed  Google Scholar 

  • Lomen, P. L., Baker, L. H., Neil, G. L. & Samson, M. K. Phase I study of 5-azacytidine (NSC-102816) using 24-hour continuous infusion for 5 days. Cancer Chemother. Rep. 59, 1123–1126 (1975).

    CAS  PubMed  Google Scholar 

  • Silverman, L. R. et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol. 20, 2429–2440 (2002).

    CAS  PubMed  Google Scholar 

  • Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711–715 (2004).

    CAS  Google Scholar 

  • Horrobin, D. F. Are large clinical trials in rapidly lethal diseases usually unethical? Lancet 361, 695–697 (2003).

    PubMed  Google Scholar 

  • Decoster, G., Stein, G. & Holdener, E. E. Responses and toxic deaths in phase I clinical trials. Ann. Oncol. 1, 175–181 (1990).

    CAS  PubMed  Google Scholar 

  • Roberts, T. G. et al. Trends in the risks and benefits to patients with cancer participating in phase 1 clinical trials. JAMA 292, 2130–2140 (2004). References 9 and 10 illustrate a significant problem with Phase I trials (namely a 4% response rate) carried out using empirically discovered would-be chemotherapeutics. We believe that using better preclinical models would improve this low level of clinical benefit, allowing for more efficient and ethical drug discovery.

    CAS  PubMed  Google Scholar 

  • Voskoglou-Nomikos, T., Pater, J. L. & Seymour, L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin. Cancer Res. 9, 4227–4239 (2003).

    PubMed  Google Scholar 

  • Johnson, J. I. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424–1431 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    CAS  PubMed  Google Scholar 

  • Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005).

    CAS  PubMed  Google Scholar 

  • Sarraf, P. et al. Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nature Med. 4, 1046–1052 (1998).

    CAS  PubMed  Google Scholar 

  • Kulke, M. H. et al. A phase II study of troglitazone, an activator of the PPARγ receptor, in patients with chemotherapy-resistant metastatic colorectal cancer. Cancer J. 8, 395–399 (2002).

    PubMed  Google Scholar 

  • Saez, E. et al. Activators of the nuclear receptor PPARγ enhance colon polyp formation. Nature Med. 4, 1058–1061 (1998).

    CAS  PubMed  Google Scholar 

  • Boehm, T., Folkman, J., Browder, T. & O'Reilly, M. S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407 (1997).

    CAS  PubMed  Google Scholar 

  • O'Reilly, M. S., Holmgren, L., Chen, C. & Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med. 2, 689–692 (1996).

    CAS  PubMed  Google Scholar 

  • Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1, 149–153 (1995).

    CAS  PubMed  Google Scholar 

  • Hansma, A. H. et al. Recombinant human endostatin administered as a 28-day continuous intravenous infusion, followed by daily subcutaneous injections: a phase I and pharmacokinetic study in patients with advanced cancer. Ann. Oncol. 16, 1695–1701 (2005).

    CAS  PubMed  Google Scholar 

  • Twombly, R. First clinical trials of endostatin yield lukewarm results. J. Natl Cancer Inst. 94, 1520–1521 (2002).

    PubMed  Google Scholar 

  • Soff, G. A. et al. In vivo generation of angiostatin isoforms by administration of a plasminogen activator and a free sulfhydryl donor: a phase I study of an angiostatic cocktail of tissue plasminogen activator and mesna. Clin. Cancer Res. 11, 6218–6225 (2005).

    CAS  PubMed  Google Scholar 

  • Thomas, J. P. et al. Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J. Clin. Oncol. 21, 223–231 (2003).

    CAS  PubMed  Google Scholar 

  • Davis, D. W. et al. Quantitative analysis of biomarkers defines an optimal biological dose for recombinant human endostatin in primary human tumors. Clin. Cancer Res. 10, 33–42 (2004).

    CAS  PubMed  Google Scholar 

  • Sausville, E. A. & Burger, A. M. Contributions of human tumor xenografts to anticancer drug development. Cancer Res. 66, 3351–3354 (2006).

    CAS  PubMed  Google Scholar 

  • Thompson, J., Stewart, C. F. & Houghton, P. J. Animal models for studying the action of topoisomerase I targeted drugs. Biochim. Biophys. Acta 1400, 301–319 (1998).

    CAS  PubMed  Google Scholar 

  • Peterson, J. K. & Houghton, P. J. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur. J. Cancer 40, 837–844 (2004).

    CAS  PubMed  Google Scholar 

  • Okami, K. et al. Analysis of PTEN/MMAC1 alterations in aerodigestive tract tumors. Cancer Res. 58, 509–511 (1998).

    CAS  PubMed  Google Scholar 

  • Meyer, W. H. et al. Development and characterization of pediatric osteosarcoma xenografts. Cancer Res. 50, 2781–2785 (1990).

    CAS  PubMed  Google Scholar 

  • Furman, W. L. et al. Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J. Clin. Oncol. 17, 1815–1824 (1999).

    CAS  PubMed  Google Scholar 

  • Sun, B., Chen, M., Hawks, C. L., Pereira-Smith, O. M. & Hornsby, P. J. The minimal set of genetic alterations required for conversion of primary human fibroblasts to cancer cells in the subrenal capsule assay. Neoplasia 7, 585–593 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, B., Chen, M., Hawks, C., Hornsby, P. J. & Wang, X. Tumorigenic study on hepatocytes coexpressing SV40 with Ras. Mol. Carcinog. 45, 213–219 (2006).

    CAS  PubMed  Google Scholar 

  • Bachoo, R. M. et al. Epidermal growth factor receptor and Ink4a/Arf. Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1, 269–277 (2002).

    CAS  PubMed  Google Scholar 

  • Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    CAS  Google Scholar 

  • Tassone, P. et al. Combination therapy with interleukin-6 receptor superantagonist Sant7 and dexamethasone induces antitumor effects in a novel SCID-hu in vivo model of human multiple myeloma. Clin. Cancer Res. 11, 4251–4258 (2005).

    CAS  PubMed  Google Scholar 

  • Mitsiades, C. S. et al. Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications. Cancer Res. 63, 6689–6696 (2003).

    CAS  PubMed  Google Scholar 

  • Bardeesy, N. et al. Both p16Ink4a and the p19Arf–p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc. Natl Acad. Sci. USA 103, 5947–5952 (2006).

    CAS  PubMed  Google Scholar 

  • Sharpless, N. E., Kannan, K., Xu, J., Bosenberg, M. W. & Chin, L. Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene 22, 5055–5059 (2003).

    CAS  PubMed  Google Scholar 

  • Chin, L. et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev. 11, 2822–2834 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bardeesy, N. et al. Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol. Cell. Biol. 21, 2144–2153 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castresana, J. S. et al. Lack of allelic deletion and point mutation as mechanisms of p53 activation in human malignant melanoma. Int. J. Cancer 55, 562–565 (1993).

    CAS  PubMed  Google Scholar 

  • Albino, A. P. et al. Mutation and expression of the p53 gene in human malignant melanoma. Melanoma Res. 4, 35–45 (1994).

    CAS  PubMed  Google Scholar 

  • Lubbe, J., Reichel, M., Burg, G. & Kleihues, P. Absence of p53 gene mutations in cutaneous melanoma. J. Invest. Dermatol. 102, 819–821 (1994).

    CAS  PubMed  Google Scholar 

  • Rhim, K. J. et al. Aberrant expression of p53 gene product in malignant melanoma. J. Korean Med. Sci. 9, 376–381 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440 (1994).

    CAS  PubMed  Google Scholar 

  • Hussussian, C. J. et al. Germline p16 mutations in familial melanoma. Nature Genet. 8, 15–21 (1994).

    CAS  PubMed  Google Scholar 

  • Koh, J., Enders, G. H., Dynlacht, B. D. & Harlow, E. Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature 375, 506–510 (1995).

    CAS  PubMed  Google Scholar 

  • Flores, J. F. et al. Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res. 56, 5023–5032 (1996).

    CAS  PubMed  Google Scholar 

  • Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nature Rev. Cancer 2, 11–18 (2002).

    CAS  Google Scholar 

  • Graves, E. E., Weissleder, R. & Ntziachristos, V. Fluorescence molecular imaging of small animal tumor models. Curr. Mol. Med. 4, 419–430 (2004).

    CAS  PubMed  Google Scholar 

  • Sotillo, R. et al. Cooperation between Cdk4 and p27kip1 in tumor development: a preclinical model to evaluate cell cycle inhibitors with therapeutic activity. Cancer Res. 65, 3846–3852 (2005).

    CAS  PubMed  Google Scholar 

  • Stewart, T. A., Pattengale, P. K. & Leder, P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38, 627–637 (1984).

    CAS  PubMed  Google Scholar 

  • Quaife, C. J., Pinkert, C. A., Ornitz, D. M., Palmiter, R. D. & Brinster, R. L. Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell 48, 1023–1034 (1987).

    CAS  PubMed  Google Scholar 

  • Brinster, R. L. et al. Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell 37, 367–379 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan, D. Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315, 115–122 (1985).

    CAS  PubMed  Google Scholar 

  • Adams, J. M. & Cory, S. Transgenic models of tumor development. Science 254, 1161–1167 (1991).

    CAS  PubMed  Google Scholar 

  • Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    CAS  PubMed  Google Scholar 

  • Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    CAS  PubMed  Google Scholar 

  • Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    CAS  PubMed  Google Scholar 

  • Van Dyke, T. & Jacks, T. Cancer modeling in the modern era: progress and challenges. Cell 108, 135–144 (2002).

    CAS  PubMed  Google Scholar 

  • Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).

    CAS  PubMed  Google Scholar 

  • Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999). References 62 and 63 are classic papers that articulate and prove the concept of the importance of oncogenes, such as MYC and RAS , in tumour maintenance as opposed to tumour progression. Since this research it has become well recognized that establishing the role of a particular gene in tumour maintenance is a crucial step in target validation.

    CAS  PubMed  Google Scholar 

  • D'Cruz, C. M. et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nature Med. 7, 235–239 (2001).

    CAS  PubMed  Google Scholar 

  • Politi, K. et al. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev. 20, 1496–1510 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher, G. H. et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev. 15, 3249–3262 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, H. et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 9, 485–495 (2006).

    CAS  PubMed  Google Scholar 

  • Boxer, R. B., Jang, J. W., Sintasath, L. & Chodosh, L. A. Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6, 577–586 (2004).

    CAS  PubMed  Google Scholar 

  • Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    CAS  PubMed  Google Scholar 

  • Berthet, C., Aleem, E., Coppola, V., Tessarollo, L. & Kaldis, P. Cdk2 knockout mice are viable. Curr. Biol. 13, 1775–1785 (2003).

    CAS  PubMed  Google Scholar 

  • Ortega, S. et al. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genet. 35, 25–31 (2003).

    CAS  PubMed  Google Scholar 

  • Martin, A. et al. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27Kip1 and p21Cip1. Cancer Cell 7, 591–598 (2005).

    CAS  PubMed  Google Scholar 

  • Aleem, E., Kiyokawa, H. & Kaldis, P. Cdc2–cyclin E complexes regulate the G1/S phase transition. Nature Cell Biol. 7, 831–836 (2005).

    CAS  PubMed  Google Scholar 

  • Yu, Q. et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell 9, 23–32 (2006).

    CAS  PubMed  Google Scholar 

  • Landis, M. W., Pawlyk, B. S., Li, T., Sicinski, P. & Hinds, P. W. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 9, 13–22 (2006).

    CAS  PubMed  Google Scholar 

  • Toogood, P. L. et al. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J. Med. Chem. 48, 2388–2406 (2005).

    CAS  PubMed  Google Scholar 

  • Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993). One of the first GEMM studies to have major implications for the development of human chemotherapeutics. This work showed that the response to cytotoxics in certain malignant cells requires p53 function, establishing a key mechanism of chemotherapy resistance.

    CAS  PubMed  Google Scholar 

  • Omer, C. A. et al. Mouse mammary tumor virus-Ki-rasB transgenic mice develop mammary carcinomas that can be growth-inhibited by a farnesyl:protein transferase inhibitor. Cancer Res. 60, 2680–2688 (2000). An important early GEMM study showing that FTI efficacy does not correlate with k-Ras mutation. The importance of this work was not fully appreciated until after a large number of human clinical trials were completed in which FTIs failed to demonstrate activity in tumours harbouring mutant k-RAS.

    CAS  PubMed  Google Scholar 

  • Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 111, 1287–1295 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pietras, K. & Hanahan, D. A multitargeted, metronomic, and maximum-tolerated dose 'chemo-switch' regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Oncol. 23, 939–952 (2005).

    CAS  PubMed  Google Scholar 

  • Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    CAS  PubMed  Google Scholar 

  • Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004).

    CAS  PubMed  Google Scholar 

  • Bergers, G., Javaherian, K., Lo, K. M., Folkman, J. & Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284, 808–812 (1999).

    CAS  PubMed  Google Scholar 

  • Casanovas, O., Hicklin, D. J., Bergers, G. & Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299–309 (2005). A clever study showing how GEMMs can be used to tackle a difficult problem in drug discovery: how to combine and sequence novel anticancer agents.

    CAS  PubMed  Google Scholar 

  • Zhang, Z. et al. Farnesyltransferase inhibitors are potent lung cancer chemopreventive agents in A/J mice with a dominant-negative p53 and/or heterozygous deletion of Ink4a/Arf. Oncogene 22, 6257–6265 (2003).

    CAS  PubMed  Google Scholar 

  • Boolbol, S. K. et al. Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. Cancer Res. 56, 2556–2560 (1996).

    CAS  PubMed  Google Scholar 

  • Opitz, O. G. et al. A mouse model of human oral-esophageal cancer. J. Clin. Invest. 110, 761–769 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacoby, R. F., Seibert, K., Cole, C. E., Kelloff, G. & Lubet, R. A. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res. 60, 5040–5044 (2000).

    CAS  PubMed  Google Scholar 

  • Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81, 197–205 (1995).

    CAS  PubMed  Google Scholar 

  • McCabe, M. T. et al. Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res. 66, 385–392 (2006).

    CAS  PubMed  Google Scholar 

  • Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    PubMed  PubMed Central  Google Scholar 

  • Shah, N. P. et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2, 117–125 (2002).

    CAS  PubMed  Google Scholar 

  • Roumiantsev, S. et al. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc. Natl Acad. Sci. USA 99, 10700–10705 (2002).

    CAS  PubMed  Google Scholar 

  • Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).

    CAS  PubMed  Google Scholar 

  • Maggi, A. & Ciana, P. Reporter mice and drug discovery and development. Nature Rev. Drug Discov. 4, 249–255 (2005).

    CAS  Google Scholar 

  • Crone, S. A. et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Med. 8, 459–465 (2002). An excellent example of how a modern, tissue-specific GEMM can be used to understand unexpected toxicity of a novel agent (in this case, a HER2/ neu antibody).

    CAS  PubMed  Google Scholar 

  • Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    CAS  PubMed  Google Scholar 

  • Blaug, S., Chien, C. & Shuster, M. J. Managing innovation: university–industry partnerships and the licensing of the Harvard mouse. Nature Biotechnol. 22, 761–764 (2004).

    CAS  Google Scholar 

  • Marshall, E. Intellectual property. DuPont ups ante on use of Harvard's OncoMouse. Science 296, 1212 (2002).

    CAS  PubMed  Google Scholar 

  • Maebius, S. B. & Wegner, H. C. Merck V. Integra: the impact of a broader 'safe harbor' exemption on nanobiotechnology. Nanotechnol. Law Business 2, 1–6 (2005).

    Google Scholar 

  • Nickerson, C. Canada court blocks Harvard bid to patent research mouse. Boston Globe (Boston) A20 6 December (2002).

    Google Scholar 

  • Check, E. Canada stops Harvard's oncomouse in its tracks. Nature 420, 593 (2002).

    CAS  PubMed  Google Scholar 

  • Jaffe, S. Ongoing battle over transgenic mice. The Scientist 18, 46 (2004).

    Google Scholar 

  • Threadgill, D. W. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269, 230–234 (1995).

    CAS  PubMed  Google Scholar 

  • Tsutsui, T. et al. Targeted disruption of CDK4 delays cell cycle entry with enhanced p27Kip1 activity. Mol. Cell. Biol. 19, 7011–7019 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rane, S. G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nature Genet. 22, 44–52 (1999).

    CAS  PubMed  Google Scholar 

  • Little, C. C. & Cloudman, A. M. The occurrence of a dominant spotting mutation in the house mouse. Proc. Natl Acad. Sci. USA 23, 535–537 (1937).

    CAS  PubMed  Google Scholar