nature.com

Down syndrome and the complexity of genome dosage imbalance - Nature Reviews Genetics

  • ️Antonarakis, Stylianos E.
  • ️Wed Dec 28 2016
  • Langdon-Down, J. Observations on an ethnic classification of idiots. London Hospital Reports 3, 259–262 (1866). First description of the phenotype of DS.

    Google Scholar 

  • LeJeune, J., Gautier, M. & Turpin, R. Etudes des chromosomes somatiques de neufs enfants mongoliens. C. R. Hebd Seances Acad. Sci. 248, 1721–1722 (in French) (1959). Identification of the extra chromosome as the genomic cause of DS.

    CAS  PubMed  Google Scholar 

  • Davisson, M. T., Schmidt, C. & Akeson, E. C. Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome. Prog. Clin. Biol. Res. 360, 263–280 (1990). Description of the most widely used mouse model of DS.

    CAS  PubMed  Google Scholar 

  • Hattori, M. et al. The DNA sequence of human chromosome 21. Nature 405, 311–319 (2000). The landmark paper on the sequence of the long arm of chromosome 21.

    Article  CAS  PubMed  Google Scholar 

  • Antonarakis, S. E. 10 years of genomics, chromosome 21, and Down syndrome. Genomics 51, 1–16 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Antonarakis, S. E. Chromosome 21: from sequence to applications. Curr. Opin. Genet. Dev. 11, 241–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Antonarakis, S. E. & Epstein, C. J. The challenge of Down syndrome. Trends Mol. Med. 12, 473–479 (2006).

    Article  PubMed  Google Scholar 

  • Antonarakis, S. E., Lyle, R., Dermitzakis, E. T., Reymond, A. & Deutsch, S. Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat. Rev. Genet. 5, 725–738 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Letourneau, A. & Antonarakis, S. E. Genomic determinants in the phenotypic variability of Down syndrome. Prog. Brain Res. 197, 15–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Hartley, D. et al. Down syndrome and Alzheimer's disease: common pathways, common goals. Alzheimers Dement. 11, 700–709 (2015).

    Article  PubMed  Google Scholar 

  • Wiseman, F. K. et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat. Rev. Neurosci. 16, 564–574 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dierssen, M. Down syndrome: the brain in trisomic mode. Nat. Rev. Neurosci. 13, 844–858 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Reeves, R. H., Baxter, L. L. & Richtsmeier, J. T. Too much of a good thing: mechanisms of gene action in Down syndrome. Trends Genet. 17, 83–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Reeves, R. H. & Garner, C. C. A year of unprecedented progress in Down syndrome basic research. Ment. Retard. Dev. Disabil. Res. Rev. 13, 215–220 (2007).

    Article  PubMed  Google Scholar 

  • Salehi, A., Faizi, M., Belichenko, P. V. & Mobley, W. C. Using mouse models to explore genotype–phenotype relationship in Down syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 13, 207–214 (2007).

    Article  PubMed  Google Scholar 

  • Lo, Y. M. et al. Presence of fetal DNA in maternal plasma and serum. Lancet 350, 485–487 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Chiu, R. W. et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc. Natl Acad. Sci. USA 105, 20458–20463 (2008).

    Article  PubMed  Google Scholar 

  • Wong, F. C. & Lo, Y. M. Prenatal diagnosis innovation: genome sequencing of maternal plasma. Annu. Rev. Med. 67, 419–432 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  • Emmrich, S. et al. miR-99a/100125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. Genes Dev. 28, 858–874 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Loghlen, A. et al. MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell 10, 33–46 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamburg, J. R. & Bloom, G. S. Cytoskeletal pathologies of Alzheimer disease. Cell Motil. Cytoskeleton 66, 635–649 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letourneau, A. et al. HSA21 single-minded 2 (Sim2) binding sites co-localize with super-enhancers and pioneer transcription factors in pluripotent mouse ES cells. PLoS ONE 10, e0126475 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa, V. et al. Massive-scale RNA-Seq analysis of non ribosomal transcriptome in human trisomy 21. PLoS ONE 6, e18493 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethupathy, P. et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am. J. Hum. Genet. 81, 405–413 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Arcelus, M. et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. eLife 2, e00523 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Arcelus, M. et al. Correction: passive and active DNA methylation and the interplay with genetic variation in gene regulation. eLife 2, e01045 (2013).

    Article  PubMed Central  Google Scholar 

  • Kilpinen, H. et al. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science 342, 744–747 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waszak, S. M. et al. Population variation and genetic control of modular chromatin architecture in humans. Cell 162, 1039–1050 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Olmos-Serrano, J. L. et al. Down syndrome developmental brain transcriptome reveals defective oligodendrocyte differentiation and myelination. Neuron 89, 1208–1222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prandini, P. et al. Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. Am. J. Hum. Genet. 81, 252–263 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahoun, S. et al. Monozygotic twins discordant for trisomy 21 and maternal 21q inheritance: a complex series of events. Am. J. Med. Genet. A146A, 2086–2093 (2008).

  • Letourneau, A. et al. Domains of genome-wide gene expression dysregulation in Down's syndrome. Nature 508, 345–350 (2014). The study that established the genome-wide transcriptome dysregulation due to trisomy 21.

    Article  CAS  PubMed  Google Scholar 

  • Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Pope, B. D. & Gilbert, D. M. Genetics: up and down in Down's syndrome. Nature 508, 323–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Hibaoui, Y. & Feki, A. Human pluripotent stem cells: applications and challenges in neurological diseases. Front. Physiol. 3, 267 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Briggs, J. A. et al. Integration-free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology. Stem Cells 31, 467–478 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, K. D. et al. Trisomy 21 consistently activates the interferon response. eLife 5, e16220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, Y. H., Schneider, E. L., Tischfield, J., Epstein, C. J. & Ruddle, F. H. Human chromosome 21 dosage: effect on the expression of the interferon induced antiviral state. Science 186, 61–63 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski, K. E., Wisniewski, H. M. & Wen, G. Y. Occurrence of neuropathological changes and dementia of Alzheimer's disease in Down's syndrome. Ann. Neurol. 17, 278–282 (1985). One of the first reports of neuropathology similar to that of Alzheimer dementia in DS.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J. & Morris, J. K. The population prevalence of Down's syndrome in England and Wales in 2011. Eur. J. Hum. Genet. 21, 1016–1019 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rumble, B. et al. Amyloid A4 protein and its precursor in Down's syndrome and Alzheimer's disease. N. Engl. J. Med. 320, 1446–1452 (1989). One of the first studies of amyloid deposition in the brains of AD and DS.

    Article  CAS  PubMed  Google Scholar 

  • Lemere, C. A. et al. Sequence of deposition of heterogeneous amyloid β-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3, 16–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Hooli, B. V. et al. Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology 78, 1250–1257 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theuns, J. et al. Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am. J. Hum. Genet. 78, 936–946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasher, V. P. et al. Molecular mapping of Alzheimer-type dementia in Down's syndrome. Ann. Neurol. 43, 380–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  • GTEx Consortium. Human genomics. the Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015). The GTEx study revealing gene expression regulatory variation in numerous human tissues.

  • Teller, J. K. et al. Presence of soluble amyloid β-peptide precedes amyloid plaque formation in Down's syndrome. Nat. Med. 2, 93–95 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Salehi, A. et al. Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51, 29–42 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Granholm, A. C., Sanders, L. A. & Crnic, L. S. Loss of cholinergic phenotype in basal forebrain coincides with cognitive decline in a mouse model of Down's syndrome. Exp. Neurol. 161, 647–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse, P. J. et al. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Yates, C. M., Simpson, J., Maloney, A. F., Gordon, A. & Reid, A. H. Alzheimer-like cholinergic deficiency in Down syndrome. Lancet 2, 979 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Cataldo, A. M. et al. Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am. J. Pathol. 157, 277–286 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, W. et al. Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration. J. Clin. Invest. 126, 1815–1833 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cossec, J. C. et al. Trisomy for synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes. Hum. Mol. Genet. 21, 3156–3172 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, L. et al. Reduction of synaptojanin 1 accelerates Aβ clearance and attenuates cognitive deterioration in an Alzheimer mouse model. J. Biol. Chem. 288, 32050–32063 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasle, H., Clemmensen, I. H. & Mikkelsen, M. Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet 355, 165–169 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Zipursky, A., Poon, A. & Doyle, J. Leukemia in Down syndrome: a review. Pediatr. Hematol. Oncol. 9, 139–149 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Al-Kasim, F. et al. Incidence and treatment of potentially lethal diseases in transient leukemia of Down syndrome: Pediatric Oncology Group Study. J. Pediatr. Hematol. Oncol. 24, 9–13 (2002).

    Article  PubMed  Google Scholar 

  • Hitzler, J. K. & Zipursky, A. Origins of leukaemia in children with Down syndrome. Nat. Rev. Cancer 5, 11–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Mateos, M. K., Barbaric, D., Byatt, S. A., Sutton, R. & Marshall, G. M. Down syndrome and leukemia: insights into leukemogenesis and translational targets. Transl Pediatr. 4, 76–92 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Buitenkamp, T. D. et al. Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. Blood 123, 70–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullighan, C. G. et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat. Genet. 41, 1243–1246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertzberg, L. et al. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood 115, 1006–1017 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev, S. I. et al. Frequent cases of RAS-mutated Down syndrome acute lymphoblastic leukaemia lack JAK2 mutations. Nat. Commun. 5, 4654 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane, A. A. et al. Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nat. Genet. 46, 618–623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy, A., Roberts, I., Norton, A. & Vyas, P. Acute megakaryoblastic leukaemia (AMKL) and transient myeloproliferative disorder (TMD) in Down syndrome: a multi-step model of myeloid leukaemogenesis. Br. J. Haematol. 147, 3–12 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Roberts, I. et al. GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. Blood 122, 3908–3917 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, K. et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat. Genet. 45, 1293–1299 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Elagib, K. E. et al. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 101, 4333–4341 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz, M. J. & Crispino, J. D. AKT collaborates with ERG and Gata1s to dysregulate megakaryopoiesis and promote AMKL. Leukemia 27, 1339–1347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harewood, L. et al. Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia 17, 547–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Weber, S. et al. Gain of chromosome 21 or amplification of chromosome arm 21q is one mechanism for increased ERG expression in acute myeloid leukemia. Genes Chromosomes Cancer 55, 148–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Banno, K. et al. Systematic cellular disease models reveal synergistic interaction of trisomy 21 and GATA1 mutations in hematopoietic abnormalities. Cell Rep. 15, 1228–1241 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Malinge, S., Izraeli, S. & Crispino, J. D. Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood 113, 2619–2628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaev, S. I. et al. Exome sequencing identifies putative drivers of progression of transient myeloproliferative disorder to AMKL in infants with Down syndrome. Blood 122, 554–561 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Malinge, S. et al. Development of acute megakaryoblastic leukemia in Down syndrome is associated with sequential epigenetic changes. Blood 122, e33–e43 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferencz, C. et al. Congenital cardiovascular malformations associated with chromosome abnormalities: an epidemiologic study. J. Pediatr. 114, 79–86 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Roizen, N. J. & Patterson, D. Down's syndrome. Lancet 361, 1281–1289 (2003).

    Article  PubMed  Google Scholar 

  • Barlow, G. M. et al. Down syndrome congenital heart disease: a narrowed region and a candidate gene. Genet. Med. 3, 91–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Korbel, J. O. et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc. Natl Acad. Sci. USA 106, 12031–12036 (2009).

    Article  PubMed  Google Scholar 

  • Lyle, R. et al. Genotype–phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur. J. Hum. Genet. 17, 454–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Dunlevy, L. et al. Down's syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse. Cardiovasc. Res. 88, 287–295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, T. et al. A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum. Mol. Genet. 19, 2780–2791 (2010). The first mouse model for the human entire trisomy 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sago, H. et al. Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc. Natl Acad. Sci. USA 95, 6256–6261 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Shinohara, T. et al. Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of Down's syndrome. Hum. Mol. Genet. 10, 1163–1175 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Lana-Elola, E. et al. Genetic dissection of Down syndrome-associated congenital heart defects using a new mouse mapping panel. eLife 5, e11614 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Grossman, T. R. et al. Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet. 7, e1002344 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sailani, M. R. et al. The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down syndrome. Genome Res. 23, 1410–1421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran, D. et al. Genome-wide association study of Down syndrome-associated atrioventricular septal defects. G3 5, 1961–1971 (2015).

    Article  CAS  PubMed  Google Scholar 

  • van Bon, B. W. et al. Intragenic deletion in DYRK1A leads to mental retardation and primary microcephaly. Clin. Genet. 79, 296–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Ji, J. et al. DYRK1A haploinsufficiency causes a new recognizable syndrome with microcephaly, intellectual disability, speech impairment, and distinct facies. Eur. J. Hum. Genet. 23, 1473–1481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad, B. & Antonarakis, S. E. Gene duplication: a drive for phenotypic diversity and cause of human disease. Annu. Rev. Genomics Hum. Genet. 8, 17–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Becker, W., Soppa, U. & Tejedor, F. J. DYRK1A: a potential drug target for multiple Down syndrome neuropathologies. CNS Neurol. Disord. Drug Targets 13, 26–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Huang, N., Lee, I., Marcotte, E. M. & Hurles, M. E. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 6, e1001154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg, J., Honti, F., Meader, S. & Webber, C. Haploinsufficiency predictions without study bias. Nucleic Acids Res. 43, e101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016). The current reference study for the frequency of genomic exonic variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson, L. E., Richtsmeier, J. T., Leszl, J. & Reeves, R. H. A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science 306, 687–690 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira, P. L. et al. A new mouse model for the trisomy of the Abcg1–U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Hum. Mol. Genet. 18, 4756–4769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brault, V. et al. Opposite phenotypes of muscle strength and locomotor function in mouse models of partial trisomy and monosomy 21 for the proximal Hspa13–App region. PLoS Genet. 11, e1005062 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z. et al. Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Hum. Mol. Genet. 16, 1359–1366 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Liu, C. et al. Genetic analysis of Down syndrome-associated heart defects in mice. Hum. Genet. 130, 623–632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C. et al. Engineered chromosome-based genetic mapping establishes a 3.7 Mb critical genomic region for Down syndrome-associated heart defects in mice. Hum. Genet. 133, 743–753 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, D., Mee, P. J., Martin, J. E., Tybulewicz, V. L. & Fisher, E. M. Transchromosomal mouse embryonic stem cell lines and chimeric mice that contain freely segregating segments of human chromosome 21. Hum. Mol. Genet. 8, 923–933 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Duchon, A., Besson, V., Pereira, P. L., Magnol, L. & Herault, Y. Inducing segmental aneuploid mosaicism in the mouse through targeted asymmetric sister chromatid event of recombination. Genetics 180, 51–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De la Torre, R. et al. Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol. Nutr. Food Res. 58, 278–288 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, F. et al. Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat. Neurosci. 10, 411–413 (2007). The mouse study that provided hope for pharmacotherapy in DS.

    Article  CAS  PubMed  Google Scholar 

  • Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Y. et al. A human stem cell model of early Alzheimer's disease pathology in Down syndrome. Sci. Transl Med. 4, 124ra29 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Mou, X. et al. Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of Down syndrome. Stem Cell Res. Ther. 3, 14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, H. E. et al. Modeling neurogenesis impairment in Down syndrome with induced pluripotent stem cells from trisomy 21 amniotic fluid cells. Exp. Cell Res. 319, 498–505 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Maclean, G. A. et al. Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells. Proc. Natl Acad. Sci. USA 109, 17567–17572 (2012).

    Article  PubMed  Google Scholar 

  • Chou, S. T. et al. Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 109, 17573–17578 (2012).

    Article  PubMed  Google Scholar 

  • Li, L. B. et al. Trisomy correction in Down syndrome induced pluripotent stem cells. Cell Stem Cell 11, 615–619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weick, J. P. et al. Deficits in human trisomy 21 iPSCs and neurons. Proc. Natl Acad. Sci. USA 110, 9962–9967 (2013).

    Article  PubMed  Google Scholar 

  • Jiang, J. et al. Translating dosage compensation to trisomy 21. Nature 500, 296–300 (2013). The amazing cis silencing effect of XIST gene insertion in an autosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C. et al. Role of astroglia in Down's syndrome revealed by patient-derived human-induced pluripotent stem cells. Nat. Commun. 5, 4430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray, A. et al. Isogenic induced pluripotent stem cell lines from an adult with mosaic Down syndrome model accelerated neuronal ageing and neurodegeneration. Stem Cells 33, 2077–2084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, C., Deng, W. & Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Stagni, F., Giacomini, A., Guidi, S., Ciani, E. & Bartesaghi, R. Timing of therapies for Down syndrome: the sooner, the better. Front. Behav. Neurosci. 9, 265 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braudeau, J. et al. Chronic treatment with a promnesiant GABA-A α5-selective inverse agonist increases immediate early genes expression during memory processing in mice and rectifies their expression levels in a Down syndrome mouse model. Adv. Pharmacol. Sci. 2011, 153218 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Cue, C. et al. Reducing GABAA α5 receptor-mediated inhibition rescues functional and neuromorphological deficits in a mouse model of down syndrome. J. Neurosci. 33, 3953–3966 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedj, F. et al. Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PLoS ONE 4, e4606 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stagni, F. et al. Treatment with epigallocatechin gallate rescues neurogenesis and neuron maturation in the Ts65Dn mouse model of Down syndrome. (Symposia abstract). Neuropsychol. Trends 16, 120 (2014).

    Google Scholar 

  • Hibaoui, Y. et al. Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol. Med. 6, 259–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  • US National Library of Medicine. ClinicalTrials.gov.https://clinicaltrials.gov/ct2/show/NCT01394796 (2010).

  • US National Library of Medicine. ClinicalTrials.gov.https://clinicaltrials.gov/ct2/show/NCT01699711 (2012).

  • de la Torre, R. et al. Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 801–810 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Roper, R. J. et al. Defective cerebellar response to mitogenic Hedgehog signaling in Down's syndrome mice. Proc. Natl Acad. Sci. USA 103, 1452–1456 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Das, I. et al. Hedgehog agonist therapy corrects structural and cognitive deficits in a Down syndrome mouse model. Sci. Transl Med. 5, 201ra120 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Belichenko, P. V. et al. Synaptic structural abnormalities in the Ts65Dn mouse model of Down syndrome. J. Comp. Neurol. 480, 281–298 (2004).

    Article  PubMed  Google Scholar 

  • Clark, S., Schwalbe, J., Stasko, M. R., Yarowsky, P. J. & Costa, A. C. Fluoxetine rescues deficient neurogenesis in hippocampus of the Ts65Dn mouse model for Down syndrome. Exp. Neurol. 200, 256–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, P. et al. Early pharmacotherapy restores neurogenesis and cognitive performance in the Ts65Dn mouse model for Down syndrome. J. Neurosci. 30, 8769–8779 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidi, S. et al. Early pharmacotherapy with fluoxetine rescues dendritic pathology in the Ts65Dn mouse model of down syndrome. Brain Pathol. 23, 129–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Stagni, F. et al. Pharmacotherapy with fluoxetine restores functional connectivity from the dentate gyrus to field CA3 in the Ts65Dn mouse model of down syndrome. PLoS ONE 8, e61689 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stagni, F. et al. Long-term effects of neonatal treatment with fluoxetine on cognitive performance in Ts65Dn mice. Neurobiol. Dis. 74, 204–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Moon, J. et al. Perinatal choline supplementation improves cognitive functioning and emotion regulation in the Ts65Dn mouse model of Down syndrome. Behav. Neurosci. 124, 346–361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velazquez, R. et al. Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol. Dis. 58, 92–101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ash, J. A. et al. Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice. Neurobiol. Dis. 70, 32–42 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • US National Library of Medicine. ClinicalTrials.gov.https://clinicaltrials.gov/ct2/show/NCT02500784 (2015).

  • Brown, C. J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti, L., Galdzicki, Z. & Haydar, T. F. Defects in embryonic neurogenesis and initial synapse formation in the forebrain of the Ts65Dn mouse model of Down syndrome. J. Neurosci. 27, 11483–11495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lott, I. T. Neurological phenotypes for Down syndrome across the life span. Prog. Brain Res. 197, 101–121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde, L. A., Frisone, D. F. & Crnic, L. S. Ts65Dn mice, a model for Down syndrome, have deficits in context discrimination learning suggesting impaired hippocampal function. Behav. Brain Res. 118, 53–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kleschevnikov, A. M. et al. Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J. Neurosci. 24, 8153–8160 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galdzicki, Z. & Siarey, R. J. Understanding mental retardation in Down's syndrome using trisomy 16 mouse models. Genes Brain Behav. 2, 167–178 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hamani, C. et al. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann. Neurol. 63, 119–123 (2008).

    Article  PubMed  Google Scholar 

  • Shirvalkar, P. R., Rapp, P. R. & Shapiro, M. L. Bidirectional changes to hippocampal theta-gamma comodulation predict memory for recent spatial episodes. Proc. Natl Acad. Sci. USA 107, 7054–7059 (2010).

    Article  PubMed  Google Scholar 

  • Hao, S. et al. Forniceal deep brain stimulation rescues hippocampal memory in Rett syndrome mice. Nature 526, 430–434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl- CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Belichenko, P. V. et al. An anti-β-amyloid vaccine for treating cognitive deficits in a mouse model of Down syndrome. PLoS ONE 11, e0152471 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Purcell, S., Cherny, S. S. & Sham, P. C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19, 149–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrow, J. et al. GENCODE: the reference human genome annotation for the ENCODE Project. Genome Res. 22, 1760–1774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).

    Article  CAS  PubMed  Google Scholar