nature.com

Repeat instability: mechanisms of dynamic mutations - Nature Reviews Genetics

  • ️Cleary, John D.
  • ️Sat Oct 01 2005
  • Pearson, C. E. Slipping while sleeping? Trinucleotide repeat expansions in germ cells. Trends Mol. Med. 9, 490–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Yoon, S. R., Dubeau, L., de Young, M., Wexler, N. S. & Arnheim, N. Huntington disease expansion mutations in humans can occur before meiosis is completed. Proc. Natl Acad. Sci. USA 100, 8834–8838 (2003). By using laser-capture microdissection and repeat-length analysis by single-cell PCR the authors advanced our understanding of the timing (pre-meiotic) and mechanism of CAG expansions and parent-of-origin (paternal) expansion biases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangiarini, L. et al. Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation. Nature Genet. 15, 197–200 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Monckton, D. G., Siciliano, M. J., Connor, T. H. & Meistrich, M. L. Age and insertion site dependence of repeat number instability of a human DM1 transgene in individual mouse sperm. Hum. Mol. Genet. 11, 791–798 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Savouret, C. et al. CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J. 22, 2264–2273 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savouret, C. et al. MSH2-dependent germinal CTG repeat expansions are produced continuously in spermatogonia from DM1 transgenic mice. Mol. Cell. Biol. 24, 629–637 (2004). An important study on the timing (pre-meiotic) of male germline expansions/contractions and the involvement of the mismatch repair protein MSH2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaytor, M. D., Burright, E. N., Duvick, L. A., Zoghbi, H. Y. & Orr, H. T. Increased trinucleotide repeat instability with advanced maternal age. Hum. Mol. Genet. 6, 2135–2139 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Malter, H. E. et al. Characterization of the full fragile X syndrome mutation in fetal gametes. Nature Genet. 15, 165–169 (1997). The authors provide an insight into the timing of the parent-of-origin effect, including maternal expansion bias and paternal contraction bias, and the potential role of CpG methylation in CGG instability.

    Article  CAS  PubMed  Google Scholar 

  • Moutou, C., Vincent, M. C., Biancalana, V. & Mandel, J. L. Transition from premutation to full mutation in fragile X syndrome is likely to be prezygotic. Hum. Mol. Genet. 6, 971–979 (1997).

    Article  CAS  PubMed  Google Scholar 

  • De Temmerman, N. et al. Intergenerational instability of the expanded CTG repeat in the DMPK gene: studies in human gametes and preimplantation embryos. Am. J. Hum. Genet. 75, 325–329 (2004). This paper gives an insight into the timing and mechanism of parent-of-origin maternal expansion bias of a CTG repeat and the timing of post-fertilization CTG instability.

    Article  CAS  PubMed  Google Scholar 

  • Lenzi, M. L. et al. Extreme heterogeneity in the molecular events leading to the establishment of chiasmata during meiosis I in human oocytes. Am. J. Hum. Genet. 76, 112–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Martorell, L., Johnson, K., Boucher, C. A. & Baiget, M. Somatic instability of the myotonic dystrophy (CTG)n repeat during human fetal development. Hum. Mol. Genet. 6, 877–880 (1997). An important insight into the timing of somatic CTG instability and the tissue specificity of this instability, some of which can continue throughout the lifetime of the adult.

    Article  CAS  PubMed  Google Scholar 

  • Reyniers, E. et al. Postmortem examination of two fragile X brothers with an FMR1 full mutation. Am. J. Med. Genet. 84, 245–249 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Nichol Edamura, K., Leonard, M. R. & Pearson, C. E. Role of replication and CpG methylation in fragile X syndrome CGG deletions in primate cells. Am. J. Hum. Genet. 76, 302–311 (2005).

    Article  PubMed  Google Scholar 

  • Carbonell, P. et al. FRAXE mutation analysis in three Spanish families. Am. J. Med. Genet. 64, 434–440 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Moseley, M. L. et al. SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum. Mol. Genet. 9, 2125–2130 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Monckton, D. G., Wong, L. J., Ashizawa, T. & Caskey, C. T. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum. Mol. Genet. 4, 1–8 (1995). This study uses the ultra-sensitive technique of small pool PCR to qualitatively and quantitatively assess CTG-length heterogeneity, allowing the detection of the products of rare events. It also provides an insight into germline contraction events.

    Article  CAS  PubMed  Google Scholar 

  • De Michele, G. et al. Parental gender, age at birth and expansion length influence GAA repeat intergenerational instability in the X25 gene: pedigree studies and analysis of sperm from patients with Friedreich's ataxia. Hum. Mol. Genet. 7, 1901–1906 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Lemmers, R. J. et al. Mechanism and timing of mitotic rearrangements in the subtelomeric D4Z4 repeat involved in facioscapulohumeral muscular dystrophy. Am. J. Hum. Genet. 75, 44–53 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benitez, J. et al. Somatic stability in chorionic villi samples and other Huntington fetal tissues. Hum. Genet. 96, 229–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Jedele, K. B. et al. Spinal and bulbar muscular atrophy (SBMA): somatic stability of an expanded CAG repeat in fetal tissues. Clin. Genet. 54, 148–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Devys, D. et al. Analysis of full fragile X mutations in fetal tissues and monozygotic twins indicate that abnormal methylation and somatic heterogeneity are established early in development. Am. J. Med. Genet. 43, 208–216 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Taylor, A. K. et al. Tissue heterogeneity of the FMR1 mutation in a high-functioning male with fragile X syndrome. Am. J. Med. Genet. 84, 233–239 (1999). Together with reference 13, this study contributed to the understanding of the timing and tissue-specificity of germline and somatic mosaicism and CpG methylation mosaicism. It indicates a role of CpG methylation in CGG instability.

    Article  CAS  PubMed  Google Scholar 

  • Pollard, L. M. et al. Replication-mediated instability of the GAA triplet repeat mutation in Friedreich ataxia. Nucleic Acids Res. 32, 5962–5971 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohrle, D. et al. Heterogeneity of DM kinase repeat expansion in different fetal tissues and further expansion during cell proliferation in vitro: evidence for a casual involvement of methyl-directed DNA mismatch repair in triplet repeat stability. Hum. Mol. Genet. 4, 1147–1153 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Thornton, C. A., Johnson, K. & Moxley, R. T. 3rd. Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann. Neurol. 35, 104–107 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Zatz, M. et al. Analysis of the CTG repeat in skeletal muscle of young and adult myotonic dystrophy patients: when does the expansion occur? Hum. Mol. Genet. 4, 401–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Martorell, L., Martinez, J. M., Carey, N., Johnson, K. & Baiget, M. Comparison of CTG repeat length expansion and clinical progression of myotonic dystrophy over a five year period. J. Med. Genet. 32, 593–596 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita, M. et al. A patient with myotonic dystrophy type 1 (DM1) accompanied by laryngeal and renal cell carcinomas had a small CTG triplet repeat expansion but no somatic instability in normal tissues. Intern. Med. 41, 312–318 (2002).

    Article  PubMed  Google Scholar 

  • Osanai, R., Kinoshita, M., Hirose, K., Homma, T. & Kawabata, I. CTG triplet repeat expansion in a laryngeal carcinoma from a patient with myotonic dystrophy. Muscle Nerve 23, 804–806 (2000).

    Article  CAS  PubMed  Google Scholar 

  • van Den Broek, W. J. et al. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 11, 191–198 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lia, A. S. et al. Somatic instability of the CTG repeat in mice transgenic for the myotonic dystrophy region is age dependent but not correlated to the relative intertissue transcription levels and proliferative capacities. Hum. Mol. Genet. 7, 1285–1291 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Gomes-Pereira, M., Fortune, M. T. & Monckton, D. G. Mouse tissue culture models of unstable triplet repeats: in vitro selection for larger alleles, mutational expansion bias and tissue specificity, but no association with cell division rates. Hum. Mol. Genet. 10, 845–854 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Nouspikel, T. & Hanawalt, P. C. DNA repair in terminally differenetiated cells. DNA Repair 1, 59–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Vinson, R. K. & Hales, B. F. DNA repair during organogenesis. Mutat. Res. 509, 79–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Cleary, J. D. & Pearson, C. E. The contribution of cis-elements to disease-associated repeat instability: Clinical and experimental evidence. Cytogenet. Genome Res. 100, 25–55 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Watase, K., Venken, K. J., Sun, Y., Orr, H. T. & Zoghbi, H. Y. Regional differences of somatic CAG repeat instability do not account for selective neuronal vulnerability in a knock-in mouse model of SCA1. Hum. Mol. Genet. 12, 2789–2795 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Sato, T. et al. Transgenic mice harboring a full-length human mutant DRPLA gene exhibit age-dependent intergenerational and somatic instabilities of CAG repeats comparable with those in DRPLA patients. Hum. Mol. Genet. 8, 99–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Fortune, M. T., Vassilopoulos, C., Coolbaugh, M. I., Siciliano, M. J. & Monckton, D. G. Dramatic, expansion-biased, age-dependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet repeat instability. Hum. Mol. Genet. 9, 439–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Al-Mahdawi, S. et al. GAA repeat instability in Friedreich ataxia YAC transgenic mice. Genomics 84, 301–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, V. C. et al. Mismatch repair gene Msh2 modifies the timing of early disease in HdhQ111 striatum. Hum. Mol. Genet. 12, 273–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Dobbing, J. & Sands, J. Comparative aspects of the brain growth spurt. Early Hum. Dev. 3, 79–83 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Maciel, P., Lopes-Cendes, I., Kish, S., Sequeiros, J. & Rouleau, G. A. Mosaicism of the CAG repeat in CNS tissue in relation to age at death in spinocerebellar ataxia type 1 and Machado–Joseph disease patients. Am. J. Hum. Genet. 60, 993–996 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy, L. et al. Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis. Hum. Mol. Genet. 12, 3359–3367 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Takano, H. et al. Somatic mosaicism of expanded CAG repeats in brains of patients with dentatorubral-pallidoluysian atrophy: cellular population-dependent dynamics of mitotic instability. Am. J. Hum. Genet. 58, 1212–1222 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashida, H. et al. Single cell analysis of CAG repeat in brains of dentatorubral-pallidoluysian atrophy (DRPLA). J. Neurol. Sci. 190, 87–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, H. et al. Differential somatic CAG repeat instability in variable brain cell lineage in dentatorubral pallidoluysian atrophy (DRPLA): a laser-captured microdissection (LCM)-based analysis. Hum. Genet. 107, 452–457 (2000). In references 46 and 47 the authors used high-selective laser-capture microdissection to study neuronal and non-neuronal somatic instability in patients' brains, and the timing and tissue-specificity of repeat expansions and contractions.

    Article  CAS  PubMed  Google Scholar 

  • Curtis, M. A. et al. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc. Natl Acad. Sci. USA 100, 9023–9027 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahlem, P. & Djian, P. The expanded CAG repeat associated with juvenile Huntington disease shows a common origin of most or all neurons and glia in human cerebrum. Neurosci. Lett. 286, 203–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, L. & Shelbourne, P. F. Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington's disease? Hum. Mol. Genet. 9, 2539–2544 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Lopes-Cendes, I. et al. Somatic mosaicism in the central nervous system in spinocerebellar ataxia type 1 and Machado–Joseph disease. Ann. Neurol. 40, 199–206 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Manley, K., Shirley, T. L., Flaherty, L. & Messer, A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nature Genet. 23, 471–473 (1999). The authors propose the active contribution of the MSH2 mismatch repair protein to the mutation of repeat sequences — a model that contrasts with this protein's role in maintaining genome integrity. They also reveal the effects of tissue-specificity of MSH2 on somatic CAG instability.

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi, G. B., Lau, R., Montgomery, S. E., Leonard, M. R. & Pearson, C. E. Slipped (CTG)*(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair. Nature Struct. Mol. Biol. 12, 654–662 (2005). This paper provides direct evidence for the processing of slipped DNAs, through a potential mutagenic intermediate of instability, and reveals mechanistic pathways through which this processing might lead to repeat stability, expansion and contraction.

    Article  CAS  Google Scholar 

  • Hashida, H., Goto, J., Kurisaki, H., Mizusawa, H. & Kanazawa, I. Brain regional differences in the expansion of a CAG repeat in the spinocerebellar ataxias: dentatorubral-pallidoluysian atrophy, Machado–Joseph disease, and spinocerebellar ataxia type 1. Ann. Neurol. 41, 505–511 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, F. et al. Tissue-specific somatic mosaicism in spinal and bulbar muscular atrophy is dependent on CAG-repeat length and androgen receptor-gene expression level. Am. J. Hum. Genet. 65, 966–973 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansved, T., Lundin, A. & Anvret, M. Larger CAG expansions in skeletal muscle compared with lymphocytes in Kennedy disease but not in Huntington disease. Neurology 51, 1442–1444 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Montermini, L., Kish, S. J., Jiralerspong, S., Lamarche, J. B. & Pandolfo, M. Somatic mosaicism for Friedreich's ataxia GAA triplet repeat expansions in the central nervous system. Neurology 49, 606–610 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Tassone, F., Hagerman, R. J., Gane, L. W. & Taylor, A. K. Strong similarities of the FMR1 mutation in multiple tissues: postmortem studies of a male with a full mutation and a male carrier of a premutation. Am. J. Med. Genet. 84, 240–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Chong, S. S. et al. Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 10, 344–350 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Pearson, C. E. et al. Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry 37, 2701–2708 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Brock, G. J., Anderson, N. H. & Monckton, D. G. Cis-acting modifiers of expanded CAG/CTG triplet repeat expandability: associations with flanking GC content and proximity to CpG islands. Hum. Mol. Genet. 8, 1061–1067 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Gourdon, G., Dessen, P., Lia, A. S., Junien, C. & Hofmann-Radvanyi, H. Intriguing association between disease associated unstable trinucleotide repeat and CpG island. Ann. Genet. 40, 73–77 (1997).

    CAS  PubMed  Google Scholar 

  • Monckton, D. G., Coolbaugh, M. I., Ashizawa, K. T., Siciliano, M. J. & Caskey, C. T. Hypermutable myotonic dystrophy CTG repeats in transgenic mice. Nature Genet. 15, 193–196 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Gourdon, G. et al. Moderate intergenerational and somatic instability of a 55-CTG repeat in transgenic mice. Nature Genet. 15, 190–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  • La Spada, A. R. et al. Androgen receptor YAC transgenic mice carrying CAG 45 alleles show trinucleotide repeat instability. Hum. Mol. Genet. 7, 959–967 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Libby, R. T. et al. Genomic context drives SCA7 CAG repeat instability, while expressed SCA7 cDNAs are intergenerationally and somatically stable in transgenic mice. Hum. Mol. Genet. 12, 41–50 (2003). This article demonstrates the need for flanking sequence for the active instability to occur in both germline and somatic tissues and confirms the implication (from haplotype analysis) that cis -elements contribute to repeat instability.

    Article  CAS  PubMed  Google Scholar 

  • Seznec, H. et al. Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. Hum. Mol. Genet. 9, 1185–1194 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe, J. S. et al. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum. Mol. Genet. 1, 397–400 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Willemsen, R., Bontekoe, C. J., Severijnen, L. A. & Oostra, B. A. Timing of the absence of FMR1 expression in full mutation chorionic villi. Hum. Genet. 110, 601–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Wohrle, D. et al. Unusual mutations in high functioning fragile X males: apparent instability of expanded unmethylated CGG repeats. J. Med. Genet. 35, 103–111 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burman, R. W., Popovich, B. W., Jacky, P. B. & Turker, M. S. Fully expanded FMR1 CGG repeats exhibit a length- and differentiation-dependent instability in cell hybrids that is independent of DNA methylation. Hum. Mol. Genet. 8, 2293–2302 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Salat, U., Bardoni, B., Wohrle, D. & Steinbach, P. Increase of FMRP expression, raised levels of FMR1 mRNA, and clonal selection in proliferating cells with unmethylated fragile X repeat expansions: a clue to the sex bias in the transmission of full mutations? J. Med. Genet. 37, 842–850 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichol, K. & Pearson, C. E. CpG methylation modifies the genetic stability of cloned repeat sequences. Genome Res. 12, 1246–1256 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbunova, V., Seluanov, A., Mittelman, D. & Wilson, J. H. Genome-wide demethylation destabilizes CTG. CAG trinucleotide repeats in mammalian cells. Hum. Mol. Genet. 13, 2979–2989 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. H., Amirhaeri, S., Kang, S., Wells, R. D. & Griffith, J. D. Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 265, 669–671 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Mulvihill, D. J., Edamura, K. N., Hagerman, K. A., Pearson, C. E. & Wang, Y. H. Effect of CAT or AGG interruptions and CpG methylation on nucleosome assembly upon trinucleotide repeats on spinocerebellar ataxia type 1 and fragile X syndrome. J. Biol. Chem. 280, 4498–4503 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Otten, A. D. & Tapscott, S. J. Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure. Proc. Natl Acad. Sci. USA 92, 5465–5469 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippova, G. N. et al. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nature Genet. 28, 335–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Cleary J. D., Nichol Edamura, K. & Pearson C. E. The complex nature of trinucleotide repeat instability. Chemtracts Biochem. Mol. Biol. 17, 663–676 (2004).

    CAS  Google Scholar 

  • Martorell, L. et al. Progression of somatic CTG repeat length heterogeneity in the blood cells of myotonic dystrophy patients. Hum. Mol. Genet. 7, 307–312 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Cleary, J. D., Nichol, K., Wang, Y. H. & Pearson, C. E. Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells. Nature Genet. 31, 37–46 (2002). This work reveals the complex influence of DNA replication on CTG instability. Along with works such as reference 87, it highlights the importance of replication-fork perturbation.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., Lau, R., Marcadier, J. L., Chitayat, D. & Pearson, C. E. Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type 1 disease locus in human cells. Am. J. Hum. Genet. 73, 1092–1105 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freudenreich, C. H. & Lahiri, M. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases. Cell Cycle 3, 1370–1374 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Nenguke, T., Aladjem, M. I., Gusella, J. F., Wexler, N. S. & Arnheim, N. Candidate DNA replication initiation regions at human trinucleotide repeat disease loci. Hum. Mol. Genet. 12, 1021–1028 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Cleary, J. D. & Pearson, C. E. Replication fork dynamics and dynamic mutations: the fork-shift model of repeat instability. Trends Genet. 21, 272–280 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kang, S., Ohshima, K., Shimizu, M., Amirhaeri, S. & Wells, R. D. Pausing of DNA synthesis in vitro at specific loci in CTG and CGG triplet repeats from human hereditary disease genes. J. Biol. Chem. 270, 27014–27021 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Samadashwily, G. M., Raca, G. & Mirkin, S. M. Trinucleotide repeats affect DNA replication in vivo. Nature Genet. 17, 298–304 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Pelletier, R., Krasilnikova, M. M., Samadashwily, G. M., Lahue, R. & Mirkin, S. M. Replication and expansion of trinucleotide repeats in yeast. Mol. Cell. Biol. 23, 1349–1357 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasilnikova, M. M. & Mirkin, S. M. Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo. Mol. Cell. Biol. 24, 2286–2295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freudenreich, C. H., Kantrow, S. M. & Zakian, V. A. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279, 853–856 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Marcadier, J. L. & Pearson, C. E. Fidelity of primate cell repair of a double-strand break within a (CTG)•(CAG) tract. Effect of slipped DNA structures. J. Biol. Chem. 278, 33848–33856 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hebert, M. L., Spitz, L. A. & Wells, R. D. DNA double-strand breaks induce deletion of CTG. CAG repeats in an orientation-dependent manner in Escherichia coli. J. Mol. Biol. 336, 655–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Spiro, C. et al. Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol. Cell 4, 1079–1085 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Henricksen, L. A., Tom, S., Liu, Y. & Bambara, R. A. Inhibition of flap endonuclease 1 by flap secondary structure and relevance to repeat sequence expansion. J. Biol. Chem. 275, 16420–16427 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. & Park, M. S. Human FEN-1 can process the 5′-flap DNA of CTG/CAG triplet repeat derived from human genetic diseases by length and sequence dependent manner. Exp. Mol. Med. 34, 313–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Callahan, J. L., Andrews, K. J., Zakian, V. A. & Freudenreich, C. H. Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility. Mol. Cell. Biol. 23, 7849–7860 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Zhang, H., Veeraraghavan, J., Bambara, R. A. & Freudenreich, C. H. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol. Cell. Biol. 24, 4049–4064 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiro, C. & McMurray, C. T. Nuclease-deficient FEN-1 blocks Rad51/BRCA1-mediated repair and causes trinucleotide repeat instability. Mol. Cell. Biol. 23, 6063–6074 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson, S. M. et al. A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage. Gene 347, 35–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wang, W. & Bambara, R. A. Human Bloom protein stimulates flap endonuclease 1 activity by resolving DNA secondary structure. J. Biol. Chem. 280, 5391–5399 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kao, H. I., Veeraraghavan, J., Polaczek, P., Campbell, J. L. & Bambara, R. A. On the roles of Saccharomyces cerevisiae Dna2p and Flap endonuclease 1 in Okazaki fragment processing. J Biol Chem 279, 15014–15024 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ireland, M. J., Reinke, S. S. & Livingston, D. M. The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast. Genetics 155, 1657–1665 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashem, V. I. et al. Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res. 32, 6334–6346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto, C. J., Almqvist, E., Hayden, M. R. & Andrew, S. E. The 'flap' endonuclease gene FEN1 is excluded as a candidate gene implicated in the CAG repeat expansion underlying Huntington disease. Clin. Genet. 59, 122–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kramer, P. R., Pearson, C. E. & Sinden, R. R. Stability of triplet repeats of myotonic dystrophy and fragile X loci in human mutator mismatch repair cell lines. Hum. Genet. 98, 151–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Goellner, G. M. et al. Different mechanisms underlie DNA instability in Huntington disease and colorectal cancer. Am. J. Hum. Genet. 60, 879–890 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grewal, R. P. Neurodegeneration in xeroderma pigmentosum: a trinucleotide repeat mutation analysis. J. Neurol. Sci. 163, 183–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Kovtun, I. V. & McMurray, C. T. Trinucleotide expansion in haploid germ cells by gap repair. Nature Genet. 27, 407–411 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Owen, B. A. et al. (CAG)n-hairpin DNA binds to Msh2–Msh3 and changes properties of mismatch recognition. Nature Struct. Mol. Biol. 12, 663–670 (2005).

    Article  CAS  Google Scholar 

  • Pearson, C. E., Ewel, A., Acharya, S., Fishel, R. A. & Sinden, R. R. Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum. Mol. Genet. 6, 1117–1123 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Wilson, T. E. & Lieber, M. R. Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymeraseβ (Pol4)-dependent pathway. J. Biol. Chem. 274, 23599–23609 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Lin, D. P. et al. An Msh2 point mutation uncouples DNA mismatch repair and apoptosis. Cancer Res. 64, 517–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Plotz, G., Raedle, J., Brieger, A., Trojan, J. & Zeuzem, S. hMutSα forms an ATP-dependent complex with hMutLα and hMutLβ on DNA. Nucleic Acids Res. 30, 711–718 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes-Pereira, M., Fortune, M. T., Ingram, L., McAbney, J. P. & Monckton, D. G. Pms2 is a genetic enhancer of trinucleotide CAG•CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion. Hum. Mol. Genet. 13, 1815–1825 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hartenstine, M. J., Goodman, M. F. & Petruska, J. Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase. J. Biol. Chem. 275, 18382–18390 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Gaudreault, I., Guay, D. & Lebel, M. YB-1 promotes strand separation in vitro of duplex DNA containing either mispaired bases or cisplatin modifications, exhibits endonucleolytic activities and binds several DNA repair proteins. Nucleic Acids Res. 32, 316–327 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Q. et al. The mismatch DNA repair heterodimer, hMSH2/6, regulates BLM helicase. Oncogene 23, 3749–3756 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Cheok, C. F., Wu, L., Garcia, P. L., Janscak, P. & Hickson, I. D. The Bloom's syndrome helicase promotes the annealing of complementary single-stranded DNA. Nucleic Acids Res. 33, 3932–3941 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty, K. M. et al. RECQ1 helicase interacts with human mismatch repair factors that regulate genetic recombination. J. Biol. Chem. 280, 28085–28094 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S. et al. Biochemical analysis of the DNA unwinding and strand annealing activities catalyzed by human RECQ1. J. Biol. Chem. 280, 28072–28084 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, K. H., Abbott, C. M. & Leach, D. R. Two opposing effects of mismatch repair on CTG repeat instability in Escherichia coli. Mol. Microbiol. 35, 463–471 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer, J. K. & Livingston, D. M. Destabilization of CAG trinucleotide repeat tracts by mismatch repair mutations in yeast. Hum. Mol. Genet. 6, 349–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Jaworski, A. et al. Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases. Proc. Natl Acad. Sci. USA 92, 11019–11023 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweitzer, J. K. & Livingston, D. M. Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum. Mol. Genet. 7, 69–74 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Jankowski, C., Nasar, F. & Nag, D. K. Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast. Proc. Natl Acad. Sci. USA 97, 2134–2139 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard, G. F., Goellner, G. M., McMurray, C. T. & Haber, J. E. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11–RAD50–XRS2 complex. EMBO J. 19, 2381–2390 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meservy, J. L. et al. Long CTG tracts from the myotonic dystrophy gene induce deletions and rearrangements during recombination at the APRT locus in CHO cells. Mol. Cell. Biol. 23, 3152–3162 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paques, F., Leung, W. Y. & Haber, J. E. Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol. Cell. Biol. 18, 2045–2054 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parniewski, P., Bacolla, A., Jaworski, A. & Wells, R. D. Nucleotide excision repair affects the stability of long transcribed (CTG*CAG) tracts in an orientation-dependent manner in Escherichia coli. Nucleic Acids Res. 27, 616–623 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oussatcheva, E. A., Hashem, V. I., Zou, Y., Sinden, R. R. & Potaman, V. N. Involvement of the nucleotide excision repair protein UvrA in instability of CAG*CTG repeat sequences in Escherichia coli. J. Biol. Chem. 276, 30878–30884 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Bowater, R. P., Jaworski, A., Larson, J. E., Parniewski, P. & Wells, R. D. Transcription increases the deletion frequency of long CTG•CAG triplet repeats from plasmids in Escherichia coli. Nucleic Acids Res. 25, 2861–2868 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parniewski, P., Jaworski, A., Wells, R. D. & Bowater, R. P. Length of CTG•CAG repeats determines the influence of mismatch repair on genetic instability. J. Mol. Biol. 299, 865–874 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Schumacher, S., Pinet, I. & Bichara, M. Modulation of transcription reveals a new mechanism of triplet repeat instability in Escherichia coli. J. Mol. Biol. 307, 39–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Stojic, L., Brun, R. & Jiricny, J. Mismatch repair and DNA damage signalling. DNA Repair (Amst.) 3, 1091–1101 (2004).

    Article  CAS  Google Scholar 

  • Lee, G. S., Brandt, V. L. & Roth, D. B. B cell development leads off with a base hit: dU:dG mismatches in class switching and hypermutation. Mol. Cell 16, 505–508 (2004).

    CAS  PubMed  Google Scholar 

  • O'Hoy, K. L. et al. Reduction in size of the myotonic dystrophy trinucleotide repeat mutation during transmission. Science 259, 809–812 (1993).

    Article  CAS  PubMed  Google Scholar 

  • van den Ouweland, A. M. et al. Loss of mutation at the FMR1 locus through multiple exchanges between maternal X chromosomes. Hum. Mol. Genet. 3, 1823–1827 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Miret, J. J., Pessoa-Brandao, L. & Lahue, R. S. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 95, 12438–12443 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakupciak, J. P. & Wells, R. D. Genetic instabilities in (CTG•CAG) repeats occur by recombination. J. Biol. Chem. 274, 23468–23479 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Cohen, H., Sears, D. D., Zenvirth, D., Hieter, P. & Simchen, G. Increased instability of human CTG repeat tracts on yeast artificial chromosomes during gametogenesis. Mol. Cell. Biol. 19, 4153–4158 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, H., Greenwell, P. W., Liu, C. P., Arnheim, N. & Petes, T. D. Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl Acad. Sci. USA 96, 1504–1509 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankowski, C. & Nag, D. K. Most meiotic CAG repeat tract-length alterations in yeast are SPO11 dependent. Mol. Genet. Genomics 267, 64–70 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Brown, L. Y. & Brown, S. A. Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet. 20, 51–58 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Stead, J. D. & Jeffreys, A. J. Allele diversity and germline mutation at the insulin minisatellite. Hum. Mol. Genet. 9, 713–723 (2000).

    Article  CAS  PubMed  Google Scholar 

  • van der Maarel, S. M. et al. De novo facioscapulohumeral muscular dystrophy: frequent somatic mosaicism, sex-dependent phenotype, and the role of mitotic transchromosomal repeat interaction between chromosomes 4 and 10. Am. J. Hum. Genet. 66, 26–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Cancel, G. et al. Somatic mosaicism of the CAG repeat expansion in spinocerebellar ataxia type 3/Machado–Joseph disease. Hum. Mutat. 11, 23–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Telenius, H. et al. Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Hum. Mol. Genet. 2, 1535–1540 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Onodera, O. et al. Progressive atrophy of cerebellum and brainstem as a function of age and the size of the expanded CAG repeats in the MJD1 gene in Machado–Joseph disease. Ann. Neurol. 43, 288–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Li, J. Y., Plomann, M. & Brundin, P. Huntington's disease: a synaptopathy? Trends Mol. Med. 9, 414–420 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Mhatre, A. N. et al. Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nature Genet. 5, 184–188 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Seo, H., Sonntag, K. C. & Isacson, O. Generalized brain and skin proteasome inhibition in Huntington's disease. Ann. Neurol. 56, 319–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Sathasivam, K. et al. Centrosome disorganization in fibroblast cultures derived from R6/2 Huntington's disease (HD) transgenic mice and HD patients. Hum. Mol. Genet. 10, 2425–2435 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Lin, X., Antalffy, B., Kang, D., Orr, H. T. & Zoghbi, H. Y. Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nature Neurosci. 3, 157–163 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Caramins, M., Halliday, G., McCusker, E. & Trent, R. J. Genetically confirmed clinical Huntington's disease with no observable cell loss. J. Neurol. Neurosurg. Psychiatry 74, 968–970 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adachi, H. et al. Transgenic mice with an expanded CAG repeat controlled by the human AR promoter show polyglutamine nuclear inclusions and neuronal dysfunction without neuronal cell death. Hum. Mol. Genet. 10, 1039–1048 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Xuereb, J. H., MacMillan, J. C., Snell, R., Davies, P. & Harper, P. S. Neuropathological diagnosis and CAG repeat expansion in Huntington's disease. J. Neurol. Neurosurg. Psychiatry 60, 78–81 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno, H. et al. An autopsy case with clinically and molecular genetically diagnosed Huntington's disease with only minimal non-specific neuropathological findings. Clin. Neuropathol. 19, 94–103 (2000).

    CAS  PubMed  Google Scholar 

  • Chamberlain, N. L., Driver, E. D. & Miesfeld, R. L. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 22, 3181–3186 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beilin, J., Ball, E. M., Favaloro, J. M. & Zajac, J. D. Effect of the androgen receptor CAG repeat polymorphism on transcriptional activity: specificity in prostate and non-prostate cell lines. J. Mol. Endocrinol. 25, 85–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Linja, M. J. & Visakorpi, T. Alterations of androgen receptor in prostate cancer. J. Steroid Biochem. Mol. Biol. 92, 255–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto, Y. et al. In situ shortening of CAG repeat length within the androgen receptor gene in prostatic cancer and its possible precursors. Prostate 58, 283–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Strachan, T. & Read, A. P. Human Molecular Genetics 2 2nd edn (John Wiley & Sons, New York, 1999).

    Google Scholar 

  • Nichol Edamura, K. & Pearson, C. E. DNA methylation and replication: implications for the 'deletion hotspot' region of FMR1. Hum. Genet. (in the press).