nature.com

Insulators: exploiting transcriptional and epigenetic mechanisms - Nature Reviews Genetics

  • ️Felsenfeld, Gary
  • ️Tue Aug 15 2006
  • Bownes, M. Preferential insertion of P elements into genes expressed in the germ-line of Drosophila melanogaster. Mol. Gen. Genet. 222, 457–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Sun, F. L. & Elgin, S. C. Putting boundaries on silence. Cell 99, 459–462 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Geyer, P. K., Spana, C. & Corces, V. G. On the molecular mechanism of gypsy-induced mutations at the yellow locus of Drosophila melanogaster. EMBO J. 5, 2657–2662 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pai, C. Y., Lei, E. P., Ghosh, D. & Corces, V. G. The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol. Cell 16, 737–748 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Capelson, M. & Corces, V. G. The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator. Mol. Cell 20, 105–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Gerasimova, T. I. & Corces, V. G. Polycomb and trithorax group proteins mediate the function of a chromatin insulator. Cell 92, 511–521 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Gerasimova, T. I., Byrd, K. & Corces, V. G. A chromatin insulator determines the nuclear localization of DNA. Mol. Cell 6, 1025–1035 (2000). This article provides the first clear demonstration that an insertion of the Su(Hw)– gypsy enhancer-blocking element targets the chromatin fibre to insulator bodies.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Q., Li, M., Adams, J. & Cai, H. N. Nuclear location of a chromatin insulator in Drosophila melanogaster. J. Cell Sci. 117, 1025–1032 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Capelson, M. & Corces, V. G. SUMO conjugation attenuates the activity of the gypsy chromatin insulator. EMBO J. 25, 1906–1914 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellum, R. & Schedl, P. A position-effect assay for boundaries of higher order chromosomal domains. Cell 64, 941–950 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Kellum, R. & Schedl, P. A group of scs elements function as domain boundaries in an enhancer-blocking assay. Mol. Cell. Biol. 12, 2424–2431 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaszner, M., Vazquez, J. & Schedl, P. The Zw5 protein, a component of the scs chromatin domain boundary, is able to block enhancer–promoter interaction. Genes Dev. 13, 2098–2107 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, K., Hart, C. M. & Laemmli, U. K. Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell 81, 879–889 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Hart, C. M., Zhao, K. & Laemmli, U. K. The scs′ boundary element: characterization of boundary element-associated factors. Mol. Cell. Biol. 17, 999–1009 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanton, J., Gaszner, M. & Schedl, P. Protein:protein interactions and the pairing of boundary elements in vivo. Genes Dev. 17, 664–675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, J. H., Whiteley, M. & Felsenfeld, G. A 5′ element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74, 505–514 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Pikaart, M. J., Recillas-Targa, F. & Felsenfeld, G. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev. 12, 2852–2862 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, J. H., Bell, A. C. & Felsenfeld, G. Characterization of the chicken β-globin insulator. Proc. Natl Acad. Sci. USA 94, 575–580 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, A. C., West, A. G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387–396 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000). References 20–22 shows that the imprinted expression of the Igf2/H19 locus is controlled by DNA-methylation-regulated binding of the CTCF enhancer-blocking protein.

    Article  CAS  PubMed  Google Scholar 

  • Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kanduri, C. et al. The 5′ flank of mouse H19 in an unusual chromatin conformation unidirectionally blocks enhancer–promoter communication. Curr. Biol. 10, 449–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Farrell, C. M., West, A. G. & Felsenfeld, G. Conserved CTCF insulator elements flank the mouse and human β-globin loci. Mol. Cell. Biol. 22, 3820–3831 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippova, G. N. et al. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nature Genet. 28, 335–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Chao, W., Huynh, K. D., Spencer, R. J., Davidow, L. S. & Lee, J. T. CTCF, a candidate trans-acting factor for X-inactivation choice. Science 295, 345–347 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Magdinier, F., Yusufzai, T. M. & Felsenfeld, G. Both CTCF-dependent and -independent insulators are found between the mouse T cell receptor α and Dad1 genes. J. Biol. Chem. 279, 25381–25389 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Yusufzai, T. M., Tagami, H., Nakatani, Y. & Felsenfeld, G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell 13, 291–298 (2004). The most comprehensive attempt at understanding the molecular mechanism of CTCF-mediated enhancer blocking. It concludes that models that are based on chromatin loop formation, which were originally developed on the basis of studies of Su(Hw) in Drosophila , might provide an explanation.

    Article  CAS  PubMed  Google Scholar 

  • Courey, A. J., Plon, S. E. & Wang, J. C. The use of psoralen-modified DNA to probe the mechanism of enhancer action. Cell 45, 567–574 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Plon, S. E. & Wang, J. C. Transcription of the human β-globin gene is stimulated by an SV40 enhancer to which it is physically linked but topologically uncoupled. Cell 45, 575–580 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Bondarenko, V., Ninfa, A. & Studitsky, V. M. DNA supercoiling allows enhancer action over a large distance. Proc. Natl Acad. Sci. USA 98, 14883–14888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondarenko, V. A., Jiang, Y. I. & Studitsky, V. M. Rationally designed insulator-like elements can block enhancer action in vitro. EMBO J. 22, 4728–4737 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameres, S. L. et al. Inducible DNA-loop formation blocks transcriptional activation by an SV40 enhancer. EMBO J. 24, 358–367 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrinos, G. P. et al. Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev. 18, 1495–1509 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne, C. S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nature Genet. 36, 1065–1071 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Jackson, D. A., Iborra, F. J., Manders, E. M. & Cook, P. R. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol. Biol. Cell 9, 1523–1536 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ling, J. Q. et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312, 269–272 (2006). This article demonstrates that CTCF protein is necessary to maintain interchromosomal interactions between Igf2/H19 and Wsb1/Nf1.

    Article  CAS  PubMed  Google Scholar 

  • West, A. G. & Fraser, P. Remote control of gene transcription. Hum. Mol. Genet. 14, R101–R111 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. & Proudfoot, N. J. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev. 11, 2494–2509 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, S., Bohl, D., Li, C. & Tuan, D. Transcription of the HS2 enhancer toward a cis-linked gene is independent of the orientation, position, and distance of the enhancer relative to the gene. Mol. Cell. Biol. 17, 3955–3965 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West, A. G., Gaszner, M. & Felsenfeld, G. Insulators: many functions, many mechanisms. Genes Dev. 16, 271–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Morcillo, P., Rosen, C. & Dorsett, D. Genes regulating the remote wing margin enhancer in the Drosophila cut locus. Genetics 144, 1143–1154 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morcillo, P., Rosen, C., Baylies, M. K. & Dorsett, D. Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila. Genes Dev. 11, 2729–2740 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, H. & Dean, A. An insulator blocks spreading of histone acetylation and interferes with RNA polymerase II transfer between an enhancer and gene. Nucleic Acids Res. 32, 4903–4919 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, K. C., Taubman, A. D. & Geyer, P. K. Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength. Genetics 153, 787–798 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, H. N. & Shen, P. Effects of cis arrangement of chromatin insulators on enhancer-blocking activity. Science 291, 493–495 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Muravyova, E. et al. Loss of insulator activity by paired Su(Hw) chromatin insulators. Science 291, 495–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kuhn, E. J., Viering, M. M., Rhodes, K. M. & Geyer, P. K. A test of insulator interactions in Drosophila. EMBO J. 22, 2463–2471 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savitskaya, E. et al. Study of long-distance functional interactions between Su(Hw) insulators that can regulate enhancer–promoter communication in Drosophila melanogaster. Mol. Cell. Biol. 26, 754–761 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, W. et al. Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nature Genet. 36, 1105–1110 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Kuzmin, I. et al. Transcriptional regulator CTCF controls human interleukin 1 receptor-associated kinase 2 promoter. J. Mol. Biol. 346, 411–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Filippova, G. N. et al. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol. Cell. Biol. 16, 2802–2813 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewal, S. I. & Rice, J. C. Regulation of heterochromatin by histone methylation and small RNAs. Curr. Opin. Cell Biol. 16, 230–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Jia, S., Noma, K. & Grewal, S. I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Rusche, L. N., Kirchmaier, A. L. & Rine, J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu. Rev. Biochem. 72, 481–516 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Bi, X. & Broach, J. R. UASrpg can function as a heterochromatin boundary element in yeast. Genes Dev. 13, 1089–1101 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oki, M., Valenzuela, L., Chiba, T., Ito, T. & Kamakaka, R. T. Barrier proteins remodel and modify chromatin to restrict silenced domains. Mol. Cell. Biol. 24, 1956–1967 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi, X., Yu, Q., Sandmeier, J. J. & Zou, Y. Formation of boundaries of transcriptionally silent chromatin by nucleosome-excluding structures. Mol. Cell. Biol. 24, 2118–2131 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebbes, T. R., Clayton, A. L., Thorne, A. W. & Crane-Robinson, C. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13, 1823–1830 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Recillas-Targa, F. et al. Position-effect protection and enhancer blocking by the chicken β-globin insulator are separable activities. Proc. Natl Acad. Sci. USA 99, 6883–6888 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litt, M. D., Simpson, M., Recillas-Targa, F., Prioleau, M. N. & Felsenfeld, G. Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J. 20, 2224–2235 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litt, M. D., Simpson, M., Gaszner, M., Allis, C. D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken β-globin locus. Science 293, 2453–2455 (2001).

    Article  CAS  PubMed  Google Scholar 

  • West, A. G., Huang, S., Gaszner, M., Litt, M. D. & Felsenfeld, G. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol. Cell 16, 453–463 (2004). This article demonstrates that direct recruitment of histone acetylases and H3K4-specific histone methyltransferases is a necessary but not sufficient component of the cHS4 vertebrate barrier element.

    Article  CAS  PubMed  Google Scholar 

  • Ishii, K., Arib, G., Lin, C., Van Houwe, G. & Laemmli, U. K. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109, 551–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Ishii, K. & Laemmli, U. K. Structural and dynamic functions establish chromatin domains. Mol. Cell 11, 237–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Casolari, J. M. et al. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117, 427–439 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Roseman, R. R., Pirrotta, V. & Geyer, P. K. The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects. EMBO J. 12, 435–442 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciavatta, D., Kalantry, S., Magnuson, T. & Smithies, O. A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation. Proc. Natl Acad. Sci. USA 103, 9958–9963 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippova, G. N. et al. Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev. Cell 8, 31–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Cho, D. H. et al. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol. Cell 20, 483–489 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Lieb, J. D., Liu, X., Botstein, D. & Brown, P. O. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein–DNA association. Nature Genet. 28, 327–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Donze, D., Adams, C. R., Rine, J. & Kamakaka, R. T. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev. 13, 698–708 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donze, D. & Kamakaka, R. T. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J. 20, 520–531 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oki, M. & Kamakaka, R. T. Barrier function at HMR. Mol. Cell 19, 707–716 (2005). This paper describes the genetic dissection of the barrier element at the centromere-distal end of HMR in S. cerevisiae.

    Article  CAS  PubMed  Google Scholar 

  • Partridge, J. F., Borgstrom, B. & Allshire, R. C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nature Genet. 37, 809–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Scott, K. C., Merrett, S. L. & Willard, H. F. A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains. Curr. Biol. 16, 119–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Willoughby, D. A., Vilalta, A. & Oshima, R. G. An Alu element from the K18 gene confers position-independent expression in transgenic mice. J. Biol. Chem. 275, 759–768 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Noma, K., Cam, H. P., Maraia, R. J. & Grewal, S. I. A role for TFIIIC transcription factor complex in genome organization. Cell 125, 859–872 (2006). This paper provides an example of barrier activity achieved by targeting the chromatin fibre to a subnuclear compartment that is unfavourable for heterochromatin formation.

    Article  CAS  PubMed  Google Scholar 

  • Wallrath, L. L. & Elgin, S. C. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 9, 1263–1277 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Sun, F. L. et al. The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. Proc. Natl Acad. Sci. USA 97, 5340–5345 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, F. L. et al. cis-Acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four. Mol. Cell. Biol. 24, 8210–8220 (2004). This paper focuses on the chromatin organization of the fourth chromosome in Drosophila and describes situations in which transition between heterochromatin and euchromatin is not regulated by barrier elements.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, A. & Horikoshi, M. Partition of distinct chromosomal regions: negotiable border and fixed border. Genes Cells 9, 499–508 (2004).

    Article  CAS  PubMed  Google Scholar