nature.com

Gene conversion: mechanisms, evolution and human disease - Nature Reviews Genetics

  • ️Patrinos, George P.
  • ️Tue Sep 11 2007
  • Slightom, J. L., Blechi, A. E. & Smithies, O. Human fetal Gγ- and Aγ-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21, 627–638 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh, B. O. & Symington, L. S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983).

    Article  CAS  PubMed  Google Scholar 

  • Haber, J. E., Ira, G., Malkova, A. & Sugawara, N. Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday's model. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 79–86 (2004). This review describes how the seminal DSBR and SDSA models have evolved over time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter, N. & Kleckner, N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106, 59–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Ira, G., Satory, D. & Haber, J. E. Conservative inheritance of newly synthesized DNA in double-strand break-induced gene conversion. Mol. Cell. Biol. 26, 9424–9429 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J. E. Srs2 and Sgs1–Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401–411 (2003). This study suggests that, whereas Srs2 promotes the SDSA pathway, Sgs1 and the topoisomerase Top3 remove double HJs, both leading to the generation of only gene-conversion events.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert, T., Dervins, D., Fabre, F. & Gangloff, S. Mrc1 and Srs2 are major actors in the regulation of spontaneous crossover. EMBO J. 25, 2837–2846 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aylon, Y., Liefshitz, B., Bitan-Banin, G. & Kupiec, M. Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 1403–1417 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krejci, L. et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Krejci, L. et al. Role of ATP hydrolysis in the antirecombinase function of Saccharomyces cerevisiae Srs2 protein. J. Biol. Chem. 279, 23193–23199 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Adams, M. D., McVey, M. & Sekelsky, J. J. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299, 265–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  • McVey, M., Larocque, J. R., Adams, M. D. & Sekelsky, J. J. Formation of deletions during double-strand break repair in Drosophila DmBLM mutants occurs after strand invasion. Proc. Natl Acad. Sci. USA 101, 15694–15699 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinert, B. T. & Rio, D. C. DNA strand displacement, strand annealing and strand swapping by the Drosophila Bloom's syndrome helicase. Nucleic Acids Res. 35, 1367–1376 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachrati, C. Z., Borts, R. H. & Hickson, I. D. Mobile D-loops are a preferred substrate for the Bloom's syndrome helicase. Nucleic Acids Res. 34, 2269–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugreev, D. V., Mazina, O. M. & Mazin, A. V. Rad54 protein promotes branch migration of Holliday junctions. Nature 442, 590–593 (2006). This work identifies a novel function (that is, promotion of bidirectional DNA branch migration) of the Rad54 protein, and suggests that it could facilitate either the SDSA pathway or the formation of double HJs.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L. & Hickson, I. D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003). This work shows that BLM and human topoisomerase IIIα suppress crossing over through the mechanism of double-HJ dissolution.

    Article  CAS  PubMed  Google Scholar 

  • Jessop, L., Rockmill, B., Roeder, G. S. & Lichten, M. Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of sgs1. PLoS Genet. 2, e155 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plank, J. L., Wu. J. & Hsieh, T. S. Topoisomerase IIIα and Bloom's helicase can resolve a mobile double Holliday junction substrate through convergent branch migration. Proc. Natl Acad. Sci. USA 103, 11118–11123 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson-Schlitz, D. & Engels, W. R. Template disruptions and failure of double Holliday junction dissolution during double-strand break repair in Drosophila BLM mutants. Proc. Natl Acad. Sci. USA 103, 16840–16845 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, L. et al. BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proc. Natl Acad. Sci. USA 103, 4068–4073 (2006). This work identifies BLAP75 as the third component of the double-HJ dissolvasome; this finding was confirmed concurrently in reference 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raynard, S., Bussen, W. & Sung, P. A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIα, and BLAP75. J. Biol. Chem. 281, 13861–13864 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Allers, T. & Lichten, M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Borner, G. V., Kleckner, N. & Hunter, N. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45 (2004).

    Article  PubMed  Google Scholar 

  • Liu, Y. & West, S. C. Happy Hollidays: 40th anniversary of the Holliday junction. Nature Rev. Mol. Cell Biol. 5, 937–944 (2004). An historical review of the HJ that remains the basis of our thinking about homologous recombination.

    Article  CAS  Google Scholar 

  • Schildkraut, E., Miller, C. A. & Nickoloff, J. A. Gene conversion and deletion frequencies during double-strand break repair in human cells are controlled by the distance between direct repeats. Nucleic Acids Res. 33, 1574–1580 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezawa, K., Oota, S. & Saitou, N. Genome-wide search of gene conversions in duplicated genes of mouse and rat. Mol. Biol. Evol. 23, 927–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Liskay, R. M., Letsou, A. & Stachelek, J. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics 115, 161–167 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waldman, A. S. & Liskay, R. M. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol. Cell. Biol. 8, 5350–5357 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter, L. T. et al. Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients. Am. J. Hum. Genet. 62, 1023–1033 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judd, S. R. & Petes, T. D. Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae. Genetics 118, 401–410 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papadakis, M. N. & Patrinos, G. P. Contribution of gene conversion in the evolution of the human β-like globin gene family. Hum. Genet. 104, 117–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Bosch, E., Hurles, M. E., Navarro, A. & Jobling, M. A. Dynamics of a human interparalog gene conversion hotspot. Genome Res. 14, 835–844 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zangenberg, G., Huang, M. M., Arnheim, N. & Erlich, H. New HLA-DPB1 alleles generated by interallelic gene conversion detected by analysis of sperm. Nature Genet. 10, 407–414 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys, A. J. & May, C. A. Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nature Genet. 36, 151–156 (2004). This work provides evidence for hotspots of human interallelic gene conversion with the potential to exert profound effects on haplotype diversity.

    Article  CAS  PubMed  Google Scholar 

  • Bacolla, A. et al. Breakpoints of gross deletions coincide with non-B DNA conformations. Proc. Natl Acad. Sci. USA 101, 14162–14167 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schildkraut, E., Miller, C. A. & Nickoloff, J. A. Transcription of a donor enhances its use during double-strand break-induced gene conversion in human cells. Mol. Cell. Biol. 26, 3098–3105 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Barrera, S., Garcia-Rubio, M. & Aguilera, A. Transcription and double-strand breaks induce similar mitotic recombination events in Saccharomyces cerevisiae. Genetics 162, 603–614 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Innan, H. A two-locus gene conversion model with selection and its application to the human RHCE and RHD genes. Proc. Natl Acad. Sci. USA 100, 8793–8798 (2003). The results presented here provide an indication of the strength of selection that is required to balance gene conversion in maintaining the observed pattern of allelic variation in this two-locus system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallast, P., Nagirnaja, L., Margus, T. & Laan, M. Segmental duplications and gene conversion: human luteinizing hormone/chorionic gonadotropin β gene cluster. Genome Res. 15, 1535–1546 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verrelli, B. C. & Tishkoff, S. A. Signatures of selection and gene conversion associated with human color vision variation. Am. J. Hum. Genet. 75, 363–375 (2004). By means of population genetic and statistical analyses, these authors showed how a combination of natural selection and gene conversion has shaped sequence diversity in the OPN1LW gene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharon, D. et al. Primate evolution of an olfactory receptor cluster: diversification by gene conversion and recent emergence of pseudogenes. Genomics 61, 24–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Woelk, C. H., Frost, S. D., Richman, D. D., Higley, P. E. & Kosakovsky Pond, S. L. Evolution of the interferon α gene family in eutherian mammals. Gene 397, 38–50 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotnikova, O. V. et al. Conversion and compensatory evolution of the γ-crystallin genes and identification of a cataractogenic mutation that reverses the sequence of the human CRYGD gene to an ancestral state. Am. J. Hum. Genet. 81, 32–43 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Salat, N., Yuhki, N., Beck, T., O'Brien, S. J. & Murphy, W. J. Gene conversion between mammalian CCR2 and CCR5 chemokine receptor genes: a potential mechanism for receptor dimerization. Genomics 90, 213–224 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Eickbush, T. H. & Eickbush, D. G. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175, 477–485 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurles, M. E. in: Encyclopedia of Life Sciences (John Wiley & Sons, Chichester, 2003).

    Google Scholar 

  • Rozen, S. et al. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423, 873–876 (2003). Having estimated that an average of 600 nucleotides in each newborn male have undergone Y–Y gene conversion, the authors highlighted an important role for gene conversion in the evolution of multi-copy testis-expressed gene families in the male-specific region of the human Y chromosome.

    Article  CAS  PubMed  Google Scholar 

  • Hurles, M. E., Willey, D., Matthews, L. & Hussain, S. S. Origins of chromosomal rearrangement hotspots in the human genome: evidence from the AZFa deletion hotspots. Genome Biol. 5, R55 (2004). The authors carried out multiple simulations to explore how gene conversion homogenizes paralogous sequences at the same time that it diversifies orthologous sequences.

    Article  PubMed  PubMed Central  Google Scholar 

  • Winderickx, J., Battisti, L., Hibiya, Y., Motulsky, A. G. & Deeb, S. S. Haplotype diversity in the human red and green opsin genes: evidence for frequent sequence exchange in exon 3. Hum. Mol. Genet. 2, 1413–1421 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Carroll, J., Neitz, J. & Neitz, M. Estimates of L:M cone ratio from ERG flicker photometry and genetics. J. Vis. 2, 531–542 (2002).

    Article  PubMed  Google Scholar 

  • Joly, E. & Rouillon, V. The orthology of HLA-E and H2-Qa1 is hidden by their concerted evolution with other MHC class I molecules. Biol. Direct 1, 2 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yip, S. P. Sequence variation at the human ABO locus. Ann. Hum. Genet. 66, 1–27 (2002).

    Article  CAS  PubMed  Google Scholar 

  • von Salome, J., Gyllensten, U. & Bergstrom, T. F. Full-length sequence analysis of the HLA-DRB1 locus suggests a recent origin of alleles. Immunogenetics 59, 261–271 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hurles, M. Are 100,000 'SNPs' useless? Science 298, 1509 (2002).

    Article  PubMed  Google Scholar 

  • Bailey, J. A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Fredman, D. et al. Complex SNP-related sequence variation in segmental genome duplications. Nature Genet. 36, 861–866 (2004). One of the first papers to report structural variation in the human genome, providing evidence for a role for gene conversion in promoting the variability of duplicon sequences.

    Article  CAS  PubMed  Google Scholar 

  • Pavlicek, A., House, R., Gentles, A. J., Jurka, J. & Morrow, B. E. Traffic of genetic information between segmental duplications flanking the typical 22q11.2deletion in velo-cardio-facial syndrome/DiGeorge syndrome. Genome Res. 15, 1487–1495 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, Z. et al. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437, 88–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  • Jackson, M. S. et al. Evidence for widespread reticulate evolution within human duplicons. Am. J. Hum. Genet. 77, 824–840 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardlie, K. et al. Lower-than-expected linkage disequilibrium between tightly linked markers in humans suggests a role for gene conversion. Am. J. Hum. Genet. 69, 582–589 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ptak, S. E., Voelpel, K. & Przeworski, M. Insights into recombination from patterns of linkage disequilibrium in humans. Genetics 167, 387–397 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  • Conrad, D. F. et al. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nature Genet. 38, 1251–1260 (2006).

    Article  CAS  PubMed  Google Scholar 

  • de Bakker, P. I. et al. Transferability of tag SNPs in genetic association studies in multiple populations. Nature Genet. 38, 1298–1303 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Wall, J. D. Close look at gene conversion hot spots. Nature Genet. 36, 114–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Need, A. C. & Goldstein, D. B. Genome-wide tagging for everyone. Nature Genet. 38, 1227–1228 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lindsay, S. J., Khajavi, M., Lupski, J. R. & Hurles, M. E. A chromosomal rearrangement hotspot can be identified from population genetic variation and is coincident with a hotspot for allelic recombination. Am. J. Hum. Genet. 79, 890–902 (2006). Together with reference 72, this work reveals the imprint of gene conversion by resequencing mutation-prone disease-associated low copy repeat (LCR) regions (commented on in reference 75).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raedt, T. D. et al. Conservation of hotspots for recombination in low-copy repeats associated with the NF1 microdeletion. Nature Genet. 38, 1419–1423 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Myers, S., Bottolo, L., Freeman, C., McVean, G. & Donnelly, P. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Coop, G. & Myers, S. R. Live hot, die young: transmission distortion in recombination hotspots. PLoS Genet. 3, e35 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers, S. R. & McCarroll, S. A. New insights into the biological basis of genomic disorders. Nature Genet. 38, 1363–1364 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Blanco, P. et al. Divergent outcomes of intrachromosomal recombination on the human Y chromosome: male infertility and recurrent polymorphism. J. Med. Genet. 37, 752–758 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes, S. H., Dorschner, M. O., Le, R. & Stephens, K. Genomic context of paralogous recombination hotspots mediating recurrent NF1 region microdeletion. Genes Chrom. Cancer 41, 12–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hellenthal, G. & Stephens, M. Insights into recombination from population genetic variation. Curr. Opin. Genet. Dev. 16, 565–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Padhukasahasram, B., Marjoram, P. & Nordborg, M. Estimating the rate of gene conversion on human chromosome 21. Am. J. Hum. Genet. 75, 386–397 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisse, L. et al. Gene conversion and different population histories may explain the contrast between polymorphism and linkage disequilibrium levels. Am. J. Hum. Genet. 69, 831–843 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffreys, A. J. & Neumann, R. Factors influencing recombination frequency and distribution in a human meiotic crossover hotspot. Hum. Mol. Genet. 14, 2277–2287 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Holloway, K., Lawson, V. E. & Jeffreys, A. J. Allelic recombination and de novo deletions in sperm in the human β-globin gene region. Hum. Mol. Genet. 15, 1099–1111 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Marais, G. Biased gene conversion: implications for genome and sex evolution. Trends Genet. 19, 330–338 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Galtier, N. Gene conversion drives GC content evolution in mammalian histones. Trends Genet. 19, 65–68 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Spencer, C. C. et al. The influence of recombination on human genetic diversity. PLoS Genet. 2, e148 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer, C. C. Human polymorphism around recombination hotspots. Biochem. Soc. Trans. 34, 535–536 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, R. D., Williamson, S. H., Zhu, L. & Bustamante, C. D. Context-dependent mutation rates may cause spurious signatures of a fixation bias favoring higher GC-content in humans. Mol. Biol. Evol. 26 Jul 2007 (doi:10.1093/molbev/msm149).

    Article  CAS  PubMed  Google Scholar 

  • Teich, N. et al. Gene conversion between functional trypsinogen genes PRSS1 and PRSS2 associated with chronic pancreatitis in a six-year-old girl. Hum. Mutat. 25, 343–347 (2005). This paper reports a unique gene-conversion event that occurred between two functional genes, resulting in a gain of function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorson, C. L., Hahnen, E., Androphy, E. J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl Acad. Sci. USA 96, 6307–6311 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, P. K. et al. Gene conversions are a common cause of von Willebrand disease. Br. J. Haematol. 130, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Linardopoulou, E. V. et al. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437, 94–100 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudd, M. K. et al. Elevated rates of sister chromatid exchange at chromosome ends. PLoS Genet. 3, e32 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee-Chen, G. J. & Wang, T. R. Mucopolysaccharidosis type I: identification of novel mutations that cause Hurler/Scheie syndrome in Chinese families. J. Med. Genet. 34, 939–941 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen, L. A. et al. A novel loss of function mutation in exon 10 of the FSH receptor gene causing hypergonadotrophic hypogonadism: clinical and molecular characteristics. Hum. Reprod. 18, 251–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Pop, R., Zaragoza, M. V., Gaudette, M., Dahrmann, U. & Scherer, G. A homozygous nonsense mutation in SOX9 in the dominant disorder campomelic dysplasia: a case of mitotic gene conversion. Hum. Genet. 117, 43–53 (2005). This work reports the first fully characterized somatic interallelic gene-conversion event in the context of human inherited disease.

    Article  PubMed  Google Scholar 

  • Hauptschein, R. S. et al. An apparent interlocus gene conversion-like event at a putative tumor suppressor gene locus on human chromosome 6q27 in a Burkitt's lymphoma cell line. DNA Res. 7, 261–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. et al. Gene conversion is a frequent mechanism of inactivation of the wild-type allele in cancers from MLH1/MSH2 deletion carriers. Cancer Res. 66, 659–664 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Auclair, J. et al. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation. Hum. Mutat. 7 Jun 2007 (doi:10.humu.20569).

  • Chambers, S. R., Hunter, N., Louis, E. J. & Borts, R. H. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Mol. Cell. Biol. 16, 6110–6120 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano, M. et al. Regulation of 3′ splice site selection in the 844ins68 polymorphism of the cystathionine β-synthase gene. J. Biol. Chem. 277, 43821–43829 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Vyletal, P. et al. Haplotype diversity of cystathionine β-synthase alleles bearing the most common homocystinuria mutation c.833T>C: a possible role for gene conversion. Hum. Mutat. 28, 255–264 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Jonkman, M. F. et al. Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. Cell 88, 543–551 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Ogino, S., Gao, S., Leonard, D. G., Paessler, M. & Wilson, R. B. Inverse correlation between SMN1 and SMN2 copy numbers: evidence for gene conversion from SMN2 to SMN1. Eur. J. Hum. Genet. 11, 275–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Fichou, Y. & Férec, C. The potential of oligonucleotides for therapeutic applications. Trends Biotechnol. 24, 563–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Masson, J. Y. et al. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev. 15, 3296–3307 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Masson, L. Y., Shah, R., O'Regan, P. & West, S. C. RAD51C is required for Holliday junction processing in mammalian cells. Science 303, 243–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lisby, M. & Rothstein, R. DNA repair: keeping it together. Curr. Biol. 14, R994–R996 (2004).

    Article  CAS  PubMed  Google Scholar 

  • De Jager, M. et al. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol. Cell 8, 1129–1135 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Herrero, F. et al. Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature 437, 440–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Scully, R. et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88, 265–275 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Sharan, S. K. et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking BRCA2. Nature 386, 804–810 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Chen, J. et al. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell 2, 317–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Yuan, S. S. et al. BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res. 59, 3547–3551 (1999).

    CAS  PubMed  Google Scholar 

  • Esashi, F., Galkin, V. E., Yu, X., Egelman, E. H. & West, S. C. Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nature Struct. Mol. Biol. 14, 468–474 (2007).

    Article  CAS  Google Scholar 

  • Davies, O. R. & Pellegrini, L. Interaction with the BRCA2 C terminus protects RAD51–DNA filaments from disassembly by BRC repeats. Nature Struct. Mol. Biol. 14, 475–483 (2007).

    Article  Google Scholar 

  • Roy, A. M. et al. Potential gene conversion and source genes for recently integrated Alu elements. Genome Res. 10, 1485–1495 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Zhi, D. Sequence correlation between neighboring Alu instances suggests post-retrotransposition sequence exchange due to Alu gene conversion. Gene 390, 117–121 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sen, S. K. et al. Human genomic deletions mediated by recombination between Alu elements. Am. J. Hum. Genet. 79, 41–53 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay, A., Jasin, M. & Chartrand, P. A double-strand break in a chromosomal LINE element can be repaired by gene conversion with various endogenous LINE elements in mouse cells. Mol. Cell. Biol. 20, 54–60 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurtele, H., Gusew. N., Lussier, R. & Chartrand, P. Characterization of in vivo recombination activities in the mouse embryo. Mol. Genet. Genomics 273, 252–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Myers, J. S. et al. A comprehensive analysis of recently integrated human Ta L1 elements. Am. J. Hum. Genet. 71, 312–326 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent, B. J. et al. Following the LINEs: an analysis of primate genomic variation at human-specific LINE-1 insertion sites. Mol. Biol. Evol. 20, 1338–1348 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Chen, J. M., Férec, C. & Cooper, D. N. Mechanism of Alu integration into the human genome. Genome Med. 1, 9–17 (2007).

    Article  Google Scholar 

  • Khan, H., Smit, A. & Boissinot, S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res. 16, 78–87 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maizels, N. Immunoglobulin gene diversification. Annu. Rev. Genet. 39, 23–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Tang, E. S. & Martin, A. Immunoglobulin gene conversion: Synthesizing antibody diversification and DNA repair. DNA Repair 27 Jun 2007 (doi:10.1016/j.dnarep.2007.05.002).

    Google Scholar 

  • D'Avirro, N., Truong, D., Xu, B. & Selsing, E. Sequence transfers between variable regions in a mouse antibody transgene can occur by gene conversion. J. Immunol. 175, 8133–8137 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Darlow, J. M. & Stott, D. I. Gene conversion in human rearranged immunoglobulin genes. Immunogenetics 58, 511–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa, T. et al. A human-specific gene in microglia. Science 309, 1693 (2005). This work describes a human-specific gene-conversion event that might have been significant in the evolution of the Homo genus.

    CAS  PubMed  Google Scholar 

  • Heinen, S. et al. De novo gene conversion in the RCA gene cluster (1q32) causes mutations in complement factor H associated with atypical hemolytic uremic syndrome. Hum. Mutat. 27, 292–293 (2006).

    Article  PubMed  Google Scholar 

  • Lee, H. H., Tsai, F. J., Lee, Y. J. & Yang, Y. C. Diversity of the CYP21A2 gene: a 6.2-kb TaqI fragment and a 3.2-kb TaqI fragment mistaken as CYP21A1P. Mol. Genet. Metab. 88, 372–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Friaes, A. et al. CYP21A2 mutations in Portuguese patients with congenital adrenal hyperplasia: identification of two novel mutations and characterization of four different partial gene conversions. Mol. Genet. Metab. 88, 58–65 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Higashi, Y., Tanae, A., Inoue, H., Hiromasa, T. & Fujii-Kuriyama, Y. Aberrant splicing and missense mutations cause steroid 21-hydroxylase [P-450(C21)] deficiency in humans: possible gene conversion products. Proc. Natl Acad. Sci. USA 85, 7486–7490 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fardella, C. E. et al. Gene conversion in the CYP11B2 gene encoding P450c11AS is associated with, but does not cause, the syndrome of corticosterone methyloxidase II deficiency. J. Clin. Endocrinol. Metab. 81, 321–326 (1996).

    CAS  PubMed  Google Scholar 

  • Nicod, J., Dick, B., Frey, F. J. & Ferrari, P. Mutation analysis of CYP11B1 and CYP11B2 in patients with increased 18-hydroxycortisol production. Mol. Cell. Endocrinol. 214, 167–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Sarhadi, V. et al. A unique form of autosomal dominant cataract explained by gene conversion between β-crystallin B2 and its pseudogene. J. Med. Genet. 38, 392–396 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  • De Marco, P. et al. Folate pathway gene alterations in patients with neural tube defects. Am. J. Med. Genet. 95, 216–223 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Hatton, C. E., Cooper, A., Whitehouse, C. & Wraith, J. E. Mutation analysis in 46 British and Irish patients with Gaucher's disease. Arch. Dis. Child. 77, 17–22 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latham, T., Grabowski, G. A., Theophilus, B. D. & Smith, F. I. Complex alleles of the acid β-glucosidase gene in Gaucher disease. Am. J. Hum. Genet. 47, 79–86 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eyal, N., Wilder, S. & Horowitz, M. Prevalent and rare mutations among Gaucher patients. Gene 96, 277–283 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Hong, C. M., Ohashi, T., Yu, X. J., Weiler, S. & Barranger, J. A. Sequence of two alleles responsible for Gaucher disease. DNA Cell Biol. 9, 233–241 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Millar, D. S. et al. Novel mutations of the growth hormone 1 (GH1) gene disclosed by modulation of the clinical selection criteria for individuals with short stature. Hum. Mutat. 21, 424–440 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Adams, J. G. III, Marrison, W. T. & Steinberg, M. H. Hemoglobin Parchman: double crossover within a single human gene. Science 218, 291–293 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Patrinos, G. P. et al. The Cretan type of non-deletional hereditary persistence of fetal hemoglobin [Aγ −158 C>T] results from two independent gene conversion events. Hum. Genet. 102, 629–634 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Minegishi, Y. et al. Mutations in the human λ5/14.1gene results in B cell deficiency and agammaglobulinemia. J. Exp. Med. 187, 71–77 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roesler, J. et al. Recombination events between the p47-phox gene and its highly homologous pseudogenes are the main cause of autosomal recessive chronic granulomatous disease. Blood 95, 2150–2156 (2000).

    CAS  PubMed  Google Scholar 

  • Vazquez, N. et al. Mutational analysis of patients with p47-phox-deficient chronic granulomatous disease: the significance of recombination events between the p47-phox gene (NCF1) and its highly homologous pseudogenes. Exp. Hematol. 29, 234–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Reyniers, E. et al. Gene conversion between red and defective green opsin gene in blue cone monochromacy. Genomics 29, 323–328 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Watnick, T. J., Gandolph, M. A., Weber, H., Neumann, H. P. & Germino, G. G. Gene conversion is a likely cause of mutation in PKD1. Hum. Mol. Genet. 7, 1239–1243 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Inoue, S. et al. Mutation analysis in PKD1 of Japanese autosomal dominant polycystic kidney disease patients. Hum. Mutat. 19, 622–628 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Nicolis, E., Bonizzato, A., Assael, B. M. & Cipolli, M. Identification of novel mutations in patients with Shwachman–Diamond syndrome. Hum. Mutat. 25, 410 (2005).

    Article  PubMed  Google Scholar 

  • Nakashima, E. et al. Novel SBDS mutations caused by gene conversion in Japanese patients with Shwachman–Diamond syndrome. Hum. Genet. 114, 345–348 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Boocock, G. R. et al. Mutations in SBDS are associated with Shwachman–Diamond syndrome. Nature Genet. 33, 97–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Bussaglia, E. et al. A frame-shift deletion in the survival motor neuron gene in Spanish spinal muscular atrophy patients. Nature Genet. 11, 335–337 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Eikenboom, J. C., Castaman, G., Vos, H. L., Bertina, R. M. & Rodeghiero, F. Characterization of the genetic defects in recessive type 1 and type 3 von Willebrand disease patients of Italian origin. Thromb. Haemost. 79, 709–717 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Eikenboom, J. C., Vink, T., Briët, E., Sixma, J. J. & Reitsma, P. H. Multiple substitutions in the von Willebrand factor gene that mimic the pseudogene sequence. Proc. Natl Acad. Sci. USA 91, 2221–2224 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z. P., Blombäck, M., Nyman, D. & Anvret, M. Mutations of von Willebrand factor gene in families with von Willebrand disease in the Aland Islands. Proc. Natl Acad. Sci. USA 90, 7937–7940 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmberg, L. et al. von Willebrand factor mutation enhancing interaction with platelets in patients with normal multimeric structure. J. Clin. Invest. 91, 2169–2177 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surdhar, G. K., Enayat, M. S., Lawson, S., Williams, M. D. & Hill, F. G. Homozygous gene conversion in von Willebrand factor gene as a cause of type 3 von Willebrand disease and predisposition to inhibitor development. Blood 98, 248–250 (2001).

    Article  CAS  PubMed  Google Scholar