nature.com

Mechanisms and functions of Hedgehog signalling across the metazoa - Nature Reviews Genetics

  • ️Seger, Claudia
  • ️Tue Apr 19 2011
  • Ingham, P. W. Transducing Hedgehog: the story so far. EMBO J. 17, 3505–3511 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, L., Johnsen, R., Lauter, G., Baillie, D. & Burglin, T. R. Comprehensive analysis of gene expression patterns of hedgehog-related genes. BMC Genomics 7, 280 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beachy, P. A. et al. Multiple roles of cholesterol in hedgehog protein biogenesis and signaling. Cold Spring Harb. Symp. Quant. Biol. 62, 191–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Ingham, P. W., Taylor, A. M. & Nakano, Y. Role of the Drosophila patched gene in positional signalling. Nature 353, 184–187 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Marigo, V., Davey, R. A., Zuo, Y., Cunningham, J. M. & Tabin, C. J. Biochemical evidence that Patched is the Hedgehog receptor. Nature 384, 176–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Zheng, X., Mann, R. K., Sever, N. & Beachy, P. A. Genetic and biochemical definition of the Hedgehog receptor. Genes Dev. 24, 57–71 (2011).

    Article  CAS  Google Scholar 

  • Ayers, K. L. & Therond, P. P. Evaluating Smoothened as a G-protein-coupled receptor for Hedgehog signalling. Trends Cell Biol. 20, 287–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. J. et al. Autoproteolysis in hedgehog protein biogenesis. Science 266, 1528–1537 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Bürglin, T. R. The Hedgehog protein family. Genome Biol. 9, 241 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koonin, E. V. A protein splice-junction motif in hedgehog family proteins. Trends Biochem. Sci. 20, 141–142 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Bürglin, T. R. Evolution of hedgehog and hedgehog-related genes, their origin from Hog proteins in ancestral eukaryotes and discovery of a novel Hint motif. BMC Genomics 9, 127 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Snell, E. A. et al. An unusual choanoflagellate protein released by Hedgehog autocatalytic processing. Proc. Biol. Sci. 273, 401–407 (2006).

    CAS  PubMed  Google Scholar 

  • Fuse, N. et al. Sonic hedgehog protein signals not as a hydrolytic enzyme but as an apparent ligand for patched. Proc. Natl Acad. Sci. USA 96, 10992–10999 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King, N. et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783–788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamska, M. et al. The evolutionary origin of hedgehog proteins. Curr. Biol. 17, R836–R837 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Matus, D. Q., Magie, C. R., Pang, K., Martindale, M. Q. & Thomsen, G. H. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev. Biol. 313, 501–518 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Avaron, F., Hoffman, L., Guay, D. & Akimenko, M. A. Characterization of two new zebrafish members of the hedgehog family: atypical expression of a zebrafish indian hedgehog gene in skeletal elements of both endochondral and dermal origins. Dev. Dyn. 235, 478–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Chamoun, Z. et al. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293, 2080–2084 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Chen, M. H., Li, Y. J., Kawakami, T., Xu, S. M. & Chuang, P. T. Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev. 18, 641–659 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters, C., Wolf, A., Wagner, M., Kuhlmann, J. & Waldmann, H. The cholesterol membrane anchor of the Hedgehog protein confers stable membrane association to lipid-modified proteins. Proc. Natl Acad. Sci. USA 101, 8531–8536 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke, R. et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 99, 803–815 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Caspary, T. et al. Mouse Dispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling. Curr. Biol. 12, 1628–1632 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kawakami, T. et al. Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling. Development 129, 5753–5765 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y. et al. Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111, 63–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lewis, P. M. et al. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105, 599–612 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Gallet, A., Ruel, L., Staccini-Lavenant, L. & Therond, P. P. Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia. Development 133, 407–418 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Zeng, X. et al. A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411, 716–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Eugster, C., Panakova, D., Mahmoud, A. & Eaton, S. Lipoprotein-heparan sulfate interactions in the Hh pathway. Dev. Cell 13, 57–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Panakova, D., Sprong, H., Marois, E., Thiele, C. & Eaton, S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435, 58–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Lum, L. et al. Hedgehog signal transduction via Smoothened association with a cytoplasmic complex scaffolded by the atypical kinesin, Costal-2. Mol. Cell 12, 1261–1274 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Vyas, N. et al. Nanoscale organization of hedgehog is essential for long-range signaling. Cell 133, 1214–1227 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Ayers, K. L., Gallet, A., Staccini-Lavenant, L. & Therond, P. P. The long-range activity of Hedgehog is regulated in the apical extracellular space by the glypican Dally and the hydrolase Notum. Dev. Cell 18, 605–620 (2010). Elegant genetic analysis implicating apically secreted HH in long-range signalling in the D. melanogaster imaginal disc and the roles of Dally and notum in promoting its release.

    Article  CAS  PubMed  Google Scholar 

  • Williams, E. H. et al. Dally-like core protein and its mammalian homologues mediate stimulatory and inhibitory effects on Hedgehog signal response. Proc. Natl Acad. Sci. USA 107, 5869–5874 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, V. F., Jones, K. A., Brodsky, M. & The, I. Quantitative analysis of Hedgehog gradient formation using an inducible expression system. BMC Dev. Biol. 7, 43 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Callejo, A., Torroja, C., Quijada, L. & Guerrero, I. Hedgehog lipid modifications are required for Hedgehog stabilization in the extracellular matrix. Development 133, 471–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain, C. E., Jeong, J., Guo, C., Allen, B. L. & McMahon, A. P. Notochord-derived Shh concentrates in close association with the apically positioned basal body in neural target cells and forms a dynamic gradient during neural patterning. Development 135, 1097–1106 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Hartman, T. R. et al. Drosophila Boi limits Hedgehog levels to suppress follicle stem cell proliferation. J. Cell Biol. 191, 943–952 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards, G. S. & Degnan, B. M. The dawn of developmental signaling in the metazoa. Cold Spring Harb. Symp. Quant. Biol. 74, 81–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Bishop, B. et al. Structural insights into hedgehog ligand sequestration by the human hedgehog-interacting protein HHIP. Nature Struct. Mol. Biol. 16, 698–703 (2009).

    Article  CAS  Google Scholar 

  • Yam, P. T., Langlois, S. D., Morin, S. & Charron, F. Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway. Neuron 62, 349–362 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Dai, P. et al. Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J. Biol. Chem. 274, 8143–8152 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson, M. K. et al. Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev. 16, 114–126 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki, H., Hui, C., Nakafuku, M. & Kondoh, H. A binding site for Gli proteins is essential for HNF-3 β floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124, 1313–1322 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Alexandre, C., Jacinto, A. & Ingham, P. W. Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes Dev. 10, 2003–2013 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Vokes, S. A., Ji, H., Wong, W. H. & McMahon, A. P. A genome-scale analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. Genes Dev. 22, 2651–2663 (2008). The first genome-scale identification of HH and GLI target genes using chromatin immunoprecipitation– chip analysis in the mouse limb.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vokes, S. A. et al. Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development 134, 1977–1989 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hallikas, O. et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 124, 47–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Goodrich, L. V., Johnson, R. L., Milenkovic, L., McMahon, J. A. & Scott, M. P. Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev. 10, 301–312 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Duman-Scheel, M., Weng, L., Xin, S. & Du, W. Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature 417, 299–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kenney, A. M. & Rowitch, D. H. Sonic hedgehog promotes G1 cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol. Cell. Biol. 20, 9055–9067 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki, H., Nishizaki, Y., Hui, C., Nakafuku, M. & Kondoh, H. Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 126, 3915–3924 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aza-Blanc, P., Ramirez-Weber, F. A., Laget, M. P., Schwartz, C. & Kornberg, T. B. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Bai, C. B., Stephen, D. & Joyner, A. L. All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev. Cell 6, 103–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Varga, Z. M. et al. Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. Development 128, 3497–3509 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Alcedo, J., Ayzenzon, M., Von Ohlen, T., Noll, M. & Hooper, J. E. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86, 221–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  • van den Heuvel, M. & Ingham, P. W. smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 382, 547–551 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Burgess, S. & Hopkins, N. Analysis of the zebrafish smoothened mutant reveals conserved and divergent functions of hedgehog activity. Development 128, 2385–2396 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X. M., Ramalho-Santos, M. & McMahon, A. P. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell 106, 781–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Beachy, P. A., Hymowitz, S. G., Lazarus, R. A., Leahy, D. J. & Siebold, C. Interactions between Hedgehog proteins and their binding partners come into view. Genes Dev. 24, 2001–2012 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenzen, T. et al. The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev. Cell 10, 647–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, M. et al. The Trichoplax genome and the nature of placozoans. Nature 454, 955–960 (2008).

    Article  CAS  PubMed  Google Scholar 

  • McLellan, J. S. et al. The mode of Hedgehog binding to Ihog homologues is not conserved across different phyla. Nature 455, 979–983 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murone, M., Rosenthal, A. & de Sauvage, F. J. Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr. Biol. 9, 76–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Taipale, J., Cooper, M. K., Maiti, T. & Beachy, P. A. Patched acts catalytically to suppress the activity of Smoothened. Nature 418, 892–897 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Tseng, T. T. et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1, 107–125 (1999).

    CAS  PubMed  Google Scholar 

  • Chen, J. K., Taipale, J., Cooper, M. K. & Beachy, P. A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743–2748 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yavari, A. et al. Role of lipid metabolism in smoothened derepression in hedgehog signaling. Dev. Cell 19, 54–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price, M. A. & Kalderon, D. Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell 108, 823–835 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Fallon, J. F. & Beachy, P. A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Pan, Y., Wang, C. & Wang, B. Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev. Biol. 326, 177–189 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Jia, J. et al. Phosphorylation by double-time/CKIepsilon and CKIα targets cubitus interruptus for Slimb/β-TRCP-mediated proteolytic processing. Dev. Cell 9, 819–830 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Tempe, D., Casas, M., Karaz, S., Blanchet-Tournier, M. F. & Concordet, J. P. Multisite protein kinase A and glycogen synthase kinase 3β phosphorylation leads to Gli3 ubiquitination by SCFβTrCP. Mol. Cell. Biol. 26, 4316–4326 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes, A. J., Nakano, Y., Taylor, A. M. & Ingham, P. W. Genetic analysis of hedgehog signalling in the Drosophila embryo. Dev. Suppl. 115–124 (1993).

  • Robbins, D. J. et al. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell 90, 225–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Sisson, J. C., Ho, K. S., Suyama, K. & Scott, M. P. Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 90, 235–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Kollmar, M. & Glockner, G. Identification and phylogenetic analysis of Dictyostelium discoideum kinesin proteins. BMC Genomics 4, 47 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  • Farzan, S. F. et al. Costal2 functions as a kinesin-like protein in the hedgehog signal transduction pathway. Curr. Biol. 18, 1215–1220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Cao, X., Jiang, J. & Jia, J. Fused-Costal2 protein complex regulates Hedgehog-induced Smo phosphorylation and cell-surface accumulation. Genes Dev. 21, 1949–1963 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stegman, M. A. et al. Identification of a tetrameric hedgehog signaling complex. J. Biol. Chem. 275, 21809–21812 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W. et al. Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev. Cell 8, 267–278 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Oh, S. A. et al. A divergent cellular role for the FUSED kinase family in the plant-specific cytokinetic phragmoplast. Curr. Biol. 15, 2107–2111 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Tang, L. et al. tsunami, the Dictyostelium homolog of the Fused kinase, is required for polarization and chemotaxis. Genes Dev. 22, 2278–2290 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruel, L. et al. Phosphorylation of the atypical kinesin Costal2 by the kinase Fused induces the partial disassembly of the Smoothened-Fused-Costal2-Cubitus interruptus complex in Hedgehog signalling. Development 134, 3677–3689 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Das, D. et al. The crystal structure of a bacterial Sufu-like protein defines a novel group of bacterial proteins that are similar to the N-terminal domain of human Sufu. Protein Sci. 19, 2131–2140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruel, L., Rodriguez, R., Gallet, A., Lavenant-Staccini, L. & Therond, P. P. Stability and association of Smoothened, Costal2 and Fused with Cubitus interruptus are regulated by Hedgehog. Nature Cell Biol. 5, 907–913 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Apionishev, S., Katanayeva, N. M., Marks, S. A., Kalderon, D. & Tomlinson, A. Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nature Cell Biol. 7, 86–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wang, G., Amanai, K., Wang, B. & Jiang, J. Interactions with Costal2 and suppressor of fused regulate nuclear translocation and activity of cubitus interruptus. Genes Dev. 14, 2893–2905 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Methot, N. & Basler, K. Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus. Development 127, 4001–4010 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Svard, J. et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev. Cell 10, 187–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Cooper, A. F. et al. Cardiac and CNS defects in a mouse with targeted disruption of suppressor of fused. Development 132, 4407–4417 (2005). This paper, together with reference 90, describes the generation of targeted mutant alleles of the mouse Sufu gene and the surprising finding that SUFU has an essential role in negatively regulating the HH pathway in mammals.

    Article  CAS  PubMed  Google Scholar 

  • Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Humke, E. W., Dorn, K. V., Milenkovic, L., Scott, M. P. & Rohatgi, R. The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev. 24, 670–682 (2010). Careful study of the role of SUFU based on analysis of the endogenous GLI proteins in tissue culture cells, establishing the central role of SUFU in regulating GLI processing, stability and activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kise, Y., Morinaka, A., Teglund, S. & Miki, H. Sufu recruits GSK3β for efficient processing of Gli3. Biochem. Biophys. Res. Commun. 387, 569–574 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Rink, J. C., Gurley, K. A., Elliott, S. A. & Sanchez Alvarado, A. Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science 326, 1406–1410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazawa, S., Umesono, Y., Hayashi, T., Tarui, H. & Agata, K. Planarian Hedgehog/Patched establishes anterior-posterior polarity by regulating Wnt signaling. Proc. Natl Acad. Sci. USA 106, 22329–22334 (2009). This paper and reference 95 describe the identification of HH pathway components in planarians and the first functional analysis of their role in regeneration. Reference 95 also presents evidence that HH signalling is independent of cilia in planarians.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nature Rev. Genet. 11, 331–344 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Han, Y. G., Kwok, B. H. & Kernan, M. J. Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm. Curr. Biol. 13, 1679–1686 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007). An elegant study describing the generation of high-quality antibodies recognizing the mammalian SMO and PTC1 proteins and their use in studying the mutually exclusive patterns of ciliary localization of PTC1 and SMO in response to SHH activity.

    Article  CAS  PubMed  Google Scholar 

  • Haycraft, C. J. et al. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1, e53 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Endoh-Yamagami, S. et al. The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr. Biol. 19, 1320–1326 (2009). Generation of a targeted mutation in the mouse COS2 orthologue, KIF7, demonstrating the previously disputed functional conservation of the protein in HH signalling from D. melanogaster to mouse and its role in regulating GLI3 trafficking in the primary cilium.

    Article  CAS  PubMed  Google Scholar 

  • Tukachinsky, H., Lopez, L. V. & Salic, A. A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J. Cell Biol. 191, 415–428 (2010). Careful analysis of the dynamics of SUFU and GLI localization and the role of SMO in promoting their dissociation in the primary cilium in response to SHH.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant, M. et al. Loss of the serine/threonine kinase fused results in postnatal growth defects and lethality due to progressive hydrocephalus. Mol. Cell. Biol. 25, 7054–7068 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, C. W. et al. Fused has evolved divergent roles in vertebrate Hedgehog signalling and motile ciliogenesis. Nature 459, 98–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evangelista, M. et al. Kinome siRNA screen identifies regulators of ciliogenesis and hedgehog signal transduction. Sci. Signal. 1, ra7 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Cheung, H. O. et al. The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci. Signal. 2, ra29 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Liem, K. F., Jr, He, M., Ocbina, P. J. & Anderson, K. V. Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc. Natl Acad. Sci. USA 106, 13377–13382 (2009). Isolation of a chemically induced missense mutation in the mouse COS2 orthologue, KIF7, demonstrating the previously disputed functional conservation of the protein in HH signalling from D. melanogaster to mouse and the role of its motor domain in trafficking in the primary cilium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doxsey, S., Zimmerman, W. & Mikule, K. Centrosome control of the cell cycle. Trends Cell Biol. 15, 303–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wigley, W. C. et al. Dynamic association of proteasomal machinery with the centrosome. J. Cell Biol. 145, 481–490 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Barzi, M., Berenguer, J., Menendez, A., Alvarez-Rodriguez, R. & Pons, S. Sonic-hedgehog-mediated proliferation requires the localization of PKA to the cilium base. J. Cell Sci. 123, 62–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. R., Richardson, J., van Eeden, F. & Ingham, P. W. Gli2a protein localization reveals a role for Iguana/DZIP1 in primary ciliogenesis and a dependence of Hedgehog signal transduction on primary cilia in the zebrafish. BMC Biol. 8, 65 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tay, S. Y. et al. The iguana/DZIP1 protein is a novel component of the ciliogenic pathway essential for axonemal biogenesis. Dev. Dyn. 239, 527–534 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Glazer, A. M. et al. The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis. Dev. Biol. 337, 148–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Ingham, P. W. & Placzek, M. Orchestrating ontogenesis: variations on a theme by sonic hedgehog. Nature Rev. Genet. 7, 841–850 (2006).

    Article  CAS  PubMed  Google Scholar 

  • McMahon, A. P., Ingham, P. W. & Tabin, C. J. Developmental roles and clinical significance of hedgehog signaling. Curr. Top. Dev. Biol. 53, 1–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Taipale, J. & Beachy, P. A. The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Ingham, P. W. & Hidalgo, A. Regulation of wingless transcription in the Drosophila embryo. Development 117, 283–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Ingham, P. W. Localized hedgehog activity controls spatial limits of wingless transcription in the Drosophila embryo. Nature 366, 560–562 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Alexandre, C., Lecourtois, M. & Vincent, J. Wingless and Hedgehog pattern Drosophila denticle belts by regulating the production of short-range signals. Development 126, 5689–5698 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Farzana, L. & Brown, S. J. Hedgehog signaling pathway function conserved in Tribolium segmentation. Dev. Genes Evol. 218, 181–192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonnet, F., Deutsch, J. & Queinnec, E. hedgehog is a segment polarity gene in a crustacean and a chelicerate. Dev. Genes Evol. 214, 537–545 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Dray, N. et al. Hedgehog signaling regulates segment formation in the annelid Platynereis. Science 329, 339–342 (2010). Functional analysis of HH signalling in this annelid species providing the first evidence that the role of HH signalling in segmentation is conserved across phyla.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, D. et al. A hedgehog homolog regulates gut formation in leech (Helobdella). Development 130, 1645–1657 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Seaver, E. C. & Kaneshige, L. M. Expression of 'segmentation' genes during larval and juvenile development in the polychaetes Capitella sp. I and H. elegans. Dev. Biol. 289, 179–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Petersen, C. P. & Reddien, P. W. Smed-βcatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319, 327–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Petersen, C. P. & Reddien, P. W. A wound-induced Wnt expression program controls planarian regeneration polarity. Proc. Natl Acad. Sci. USA 106, 17061–17066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi, T. P. Heads or tails: Wnts and anterior-posterior patterning. Curr. Biol. 11, R713–R724 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Dessaud, E., McMahon, A. P. & Briscoe, J. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135, 2489–2503 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Ramalho-Santos, M., Melton, D. A. & McMahon, A. P. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127, 2763–2772 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Walton, K. D., Croce, J. C., Glenn, T. D., Wu, S. Y. & McClay, D. R. Genomics and expression profiles of the Hedgehog and Notch signaling pathways in sea urchin development. Dev. Biol. 300, 153–164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton, K. D., Warner, J., Hertzler, P. H. & McClay, D. R. Hedgehog signaling patterns mesoderm in the sea urchin. Dev. Biol. 331, 26–37 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, J., Kim, B. M., Rajurkar, M., Shivdasani, R. A. & McMahon, A. P. Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development 137, 1721–1729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madison, B. B. et al. Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development 132, 279–289 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Crosnier, C., Stamataki, D. & Lewis, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nature Rev. Genet. 7, 349–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Takashima, S., Mkrtchyan, M., Younossi-Hartenstein, A., Merriam, J. R. & Hartenstein, V. The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454, 651–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Shin, K. et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells bladder. Nature 427, 110–114 (2011).

    Article  CAS  Google Scholar 

  • Retaux, S., Pottin, K. & Alunni, A. Shh and forebrain evolution in the blind cavefish Astyanax mexicanus. Biol. Cell 100, 139–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Retaux, S. & Kano, S. Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey hedgehog case. Integrative Comparitive Biol. 50, 98–109 (2010).

    Article  CAS  Google Scholar 

  • Kano, S. et al. Two lamprey Hedgehog genes share non-coding regulatory sequences and expression patterns with gnathostome Hedgehogs. PLoS ONE 5, e1 3332.

    Google Scholar 

  • Keys, D. N. et al. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283, 532–534 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Mas, C. & Ruiz i Altaba, A. Small molecule modulation of HH-GLI signaling: current leads, trials and tribulations. Biochem. Pharmacol. 80, 712–723 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Low, J. A. & de Sauvage, F. J. Clinical experience with Hedgehog pathway inhibitors. J. Clin. Oncol. 28, 5321–5326 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y. et al. Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened in Drosophila. Mech. Dev. 121, 507–518 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Aanstad, P. et al. The extracellular domain of Smoothened regulates ciliary localization and is required for high-level Hh signaling. Curr. Biol. 19, 1034–1039 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogden, S. K. et al. G protein Gαi functions immediately downstream of Smoothened in Hedgehog signalling. Nature 456, 967–970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malpel, S. et al. The last 59 amino acids of Smoothened cytoplasmic tail directly bind the protein kinase Fused and negatively regulate the Hedgehog pathway. Dev. Biol. 303, 121–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Wolff, C., Roy, S. & Ingham, P. W. Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr. Biol. 13, 1169–1181 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Tong, C. & Jiang, J. Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450, 252–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y. et al. G protein-coupled receptor kinase 2 promotes high-level Hedgehog signaling by regulating the active state of Smo through kinase-dependent and kinase-independent mechanisms in Drosophila. Genes Dev. 24, 2054–2067 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philipp, M. et al. Smoothened signaling in vertebrates is facilitated by a G protein-coupled receptor kinase. Mol. Biol. Cell 19, 5478–5489 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara, P. E. & Labouesse, M. The sterol-sensing domain: multiple families, a unique role? Trends Genet. 18, 193–201 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hausmann, G., von Mering, C. & Basler, K. The hedgehog signaling pathway: where did it come from? PLoS Biol. 7, e1000146 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halbleib, J. M. & Nelson, W. J. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20, 3199–3214 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Chen, X. et al. Processing and turnover of the Hedgehog protein in the endoplasmic reticulum. J. Cell Biol. 192, 825–838 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abel, E. S. et al. Possible roles of protein kinase A in cell motility and excystation of the early diverging eukaryote Giardia lamblia. J. Biol. Chem. 276, 10320–10329 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Pitsouli, C. & Perrimon, N. Developmental biology: our fly cousins' gut. Nature 454, 592–593 (2008).

    Article  CAS  PubMed  Google Scholar