nature.com

The evolution of plant sexual diversity - Nature Reviews Genetics

  • ️Barrett, Spencer C. H.
  • ️Mon Apr 01 2002
  • Charlesworth, D. in Gender and Sexual Dimorphism in Flowering Plants (eds Geber, M. A., Dawson, T. E. & Delph, L. F.) 33–60 (Springer, Berlin, 1999).

    Book  Google Scholar 

  • Uyenoyama, M. K. A prospectus for new developments in the evolutionary theory of self-incompatibility. Ann. Bot. 85, 247–252 (2000).

    Article  CAS  Google Scholar 

  • Pannell, J. R. & Barrett, S. C. H. Effects of drift, selection and population turnover on a mating-system polymorphism. Theor. Popul. Biol. 59, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Barrett, S. C. H., Harder, L. D. & Worley, A. C. The comparative biology of pollination and mating in flowering plants. Phil. Trans. R. Soc. Lond. B 351, 1271–1280 (1996).This paper uses comparative and phylogenetic analyses to show significant associations between mating systems and life history in plants.

    Article  Google Scholar 

  • Weller, S. G. & Sakai, A. K. Using phylogenetic approaches for the analysis of plant breeding system evolution. Annu. Rev. Ecol. Syst. 30, 167–199 (1999).

    Article  Google Scholar 

  • Weiblen, G. D., Oyama, R. K. & Donoghue, M. J. Phylogenetic analysis of dioecy in monocotyledons. Am. Nat. 155, 46–58 (2000).

    Article  PubMed  Google Scholar 

  • Cresswell, J. E. Manipulation of female architecture in flowers reveals a narrow optimum for pollen deposition. Ecology 81, 3244–3249 (2000).

    Article  Google Scholar 

  • Walker-Larson, J. & Harder, L. D. Vestigial organs as opportunities for functional innovation: the example of the Penstemon staminode. Evolution 55, 477–487 (2001).

    Article  Google Scholar 

  • Fetscher, A. E. Resolution of male–female conflict in a hermaphrodite flower. Proc. R. Soc. Lond. B 268, 525–529 (2001).The first experimental demonstration that a floral trait can function to reduce female interference with pollen dispersal in a hermaphrodite plant.

    Article  CAS  Google Scholar 

  • Lloyd, D. G. & Barrett, S. C. H. (eds) Floral Biology: Studies on Floral Evolution in Animal-Pollinated Plants (Chapman & Hall, New York, 1996).

    Book  Google Scholar 

  • Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18, 237–268 (1987).The classic review of the significance of inbreeding depression for the evolution of mating systems.

    Article  Google Scholar 

  • Lloyd, D. G. Parental strategies of angiosperms. NZ J. Bot. 17, 595–606 (1979).

    Article  Google Scholar 

  • Lloyd, D. G & Schoen, D. J. Self- and cross-fertilization in plants. I. Functional dimensions. Int. J. Plant Sci. 153, 358–369 (1992).

    Article  Google Scholar 

  • Geber, M. A., Dawson, T. E. & Delph, L. F. (eds) Gender and Sexual Dimorphism in Flowering Plants (Springer, Berlin, 1999).

    Book  Google Scholar 

  • Harder, L. D. & Barrett, S. C. H. in Floral Biology: Studies on Floral Evolution in Animal-Pollinated Plants (eds Lloyd, D. G. & Barrett, S. C. H.) 140–190 (Chapman & Hall, New York, 1996).

    Book  Google Scholar 

  • Barrett, S. C. H., Jesson, L. K. & Baker, A. M. The evolution and function of stylar polymorphisms in flowering plants. Ann. Bot. 85, 253–265 (2000).The first attempt to provide a unified explanation for the adaptive significance of the four main stylar polymorphisms in plants.

    Article  Google Scholar 

  • Barrett, S. C. H., Cole, W. W., Arroyo, J., Cruzan, M. B. & Lloyd, D. G. Sexual polymorphisms in Narcissus triandrus (Amaryllidaceae): is this species tristylous? Heredity 78, 135–145 (1997).

    Article  Google Scholar 

  • Barrett, S. C. H., Wilken, D. H. & Cole, W. W. Heterostyly in the Lamiaceae: the case of Salvia brandegeei. Plant Syst. Evol. 223, 211–219 (2000).

    Article  Google Scholar 

  • Lewis, D. & Jones, D. A. in Evolution and Function of Heterostyly (ed. Barrett, S. C. H.) 129–150 (Springer, Berlin, 1992).

    Book  Google Scholar 

  • McCubbin, A. G. & Kao, T. Molecular recognition and response in pollen and pistil interactions. Annu. Rev. Cell. Dev. Biol. 16, 333–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Jesson, L. K. The Evolution and Functional Significance of Enantiostyly in Flowering Plants. Ph.D. Thesis, University of Toronto (2002).

    Google Scholar 

  • Luo, D., Carpenter, C., Vincent, L., Copsey, L. & Coen, E. Origin of floral asymmetry in Antirrhinum. Nature 383, 794–799 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Jesson, L. K. & Barrett, S. C. H. Enantiostyly in Wachendorfia (Haemodoraceae): the influence of reproductive systems on the maintenance of the polymorphism. Am. J. Bot. 89, 253–262 (2002).

    Article  PubMed  Google Scholar 

  • Li, Q.-J. et al. Flexible style that encourages outcrossing. Nature 410, 432 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Li, Q.-J. et al. Study on the flexistyly pollination mechanism in Alpinia plants (Zingiberaceae). Acta Bot. Sin. 43, 364–369 (2001).

    Google Scholar 

  • Renner, S. S. How common is heterodichogamy? Trends Ecol. Evol. 16, 595–597 (2001).

    Article  Google Scholar 

  • Gleeson, S. K. Heterodichogamy in walnuts: inheritance and stable ratios. Evolution 36, 892–902 (1982).

    Article  PubMed  Google Scholar 

  • Thompson, T. E. & Romberg, L. D. Inheritance of heterodichogamy in pecan. J. Hered. 76, 456–458 (1985).

    Article  Google Scholar 

  • Lloyd, D. G. Sexual strategies in plants. III. A quantitative method for describing the gender of plants. NZ J. Bot. 18, 103–108 (1980).

    Article  Google Scholar 

  • Delph, L. F. Sex-ratio variation in the gynodioecious shrub Hebe strictissima (Scrophulariaceae). Evolution 44, 134–142 (1990).

    Article  PubMed  Google Scholar 

  • Liston, A., Rieseberg, L. H. & Elias, T. S. Functional androdioecy in the flowering plant Datisca glomerata. Nature 343, 641–642 (1992).

    Article  Google Scholar 

  • El-Keblawy, A., Lovett Doust, J. & Lovett Doust, L. Gender variation and the evolution of dioecy in Thymelaea hirsuta (Thymelaeaceae). Can. J. Bot. 74, 1596–1601 (1996).

    Article  Google Scholar 

  • Pailler, T., Humeau, L., Figier, J. & Thompson, J. D. Reproductive trait variation in the functionally dioecious and morphologically heterostylous island endemic Chassalia corallioides (Rubiaceae). Biol. J. Linn. Soc. 64, 297–313 (1998).

    Google Scholar 

  • Lebel-Hardenack, S. & Grant, S. R. Genetics of sex determination in flowering plants. Trends Plant Sci. 2, 130–139 (1997).

    Article  Google Scholar 

  • Wolfe, D. E., Satkoski, J. A., White, K. & Rieseberg, L. H. Sex determination in the androdioecious plant Datisca glomerata, and its dioecious sister species, D. cannabina. Genetics 159, 1243–1257 (2001).

    Article  Google Scholar 

  • Parker, J. S. Sex chromosomes and sexual differentiation in flowering plants. Chromosomes Today 10, 187–198 (1990).

    CAS  Google Scholar 

  • Louis, J. P., Augur, C. & Teller, G. Cytokinins and differentiation process in Mercurialis annua. Plant Physiol. 94, 1535–1541 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, T. & Quinn, J. A. Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Am. J. Bot. 82, 1537–1546 (1995).

    Article  CAS  Google Scholar 

  • Maurice, S., Belhassen, E., Couvet, D. & Gouyon, P.-H. Evolution of dioecy: can nuclear cytoplasmic interactions select for maleness? Heredity 73, 346–354 (1994).

    Article  PubMed  Google Scholar 

  • Schultz, S. Nucleo-cytoplasmic male sterility and alternative routes to dioecy. Evolution 48, 1933–1945 (1994).

    Article  PubMed  Google Scholar 

  • Pannell, J. R. The maintenance of gynodioecy and androdioecy in a metapopulation. Evolution 51, 10–20 (1997).The first use of metapopulation theory to inform understanding of the evolution and maintenance of plant sexual systems.

    Article  PubMed  Google Scholar 

  • Barrett, S. C. H. Gender variation in Wurmbea (Liliaceae) and the evolution of dioecy. J. Evol. Biol. 5, 423–444 (1992).

    Article  Google Scholar 

  • Wolfe, L. M. & Shmida, A. The ecology of sex expression in a gynodioecious Israeli desert shrub (Ochradenus baccatus). Ecology 78, 101–110 (1997).

    Article  Google Scholar 

  • Delph, L. F. & Carroll, S. B. Factors affecting the relative seed fitness and female frequency in a gynodioecious species, Silene acaulis. Evol. Ecol. Res. 3, 487–505 (2001).

    Google Scholar 

  • de Jong, T. J. From pollen dynamics to adaptive dynamics. Plant Species Biol. 15, 31–41 (2000).

    Article  Google Scholar 

  • Sarkissian, T. S., Barrett, S. C. H. & Harder, L. D. Gender variation in Sagittaria latifolia (Alismataceae): is size all that matters? Ecology 82, 360–373 (2001).

    Article  Google Scholar 

  • Renner, S. S. & Ricklefs, R. E. Dioecy and its correlates. Am. J. Bot. 82, 596–606 (1995).

    Article  Google Scholar 

  • Renner, S. S. & Won, H. Repeated evolution of monoecy in Siparunaceae (Laurales). Syst. Biol. 50, 700–712 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kohn, J. R. & Biardi, J. E. Outcrossing rates and inferred levels of inbreeding depression in gynodioecious Cucurbita foetidissima (Cucurbitaceae). Heredity 75, 77–83 (1995).

    Article  Google Scholar 

  • Schultz, S. T. & Ganders, F. R. Evolution of unisexuality in the Hawaiian flora: a test of microevolutionary theory. Evolution 50, 842–855 (1996).

    Article  PubMed  Google Scholar 

  • Sakai, A. K., Weller, S. G., Chen, M.-L., Chou, S.-Y. & Tasanont, C. Evolution of gynodioecy and maintenance of females: the role of inbreeding depression, outcrossing rates and resource allocation in Schiedea adamantis (Caryophyllaceae). Evolution 51, 724–736 (1997).

    Article  PubMed  Google Scholar 

  • Seger, J. & Eckhart, V. M. Evolution of sexual systems and sex allocation in plant species when growth and reproduction overlap. Proc. R. Soc. Lond. B 263, 833–841 (1996).

    Article  Google Scholar 

  • Schultz, S. T. Can females benefit from selfing avoidance? Genetic associations and the evolution of plant gender. Proc. R. Soc. Lond. B 266 1967–1973 (1999).

    Article  Google Scholar 

  • Takebayashi, N. & Delph, L. F. An association between a floral trait and inbreeding depression. Evolution 54, 840–846 (2000).The first empirical evidence for a genetic association between a sexual trait that influences mating and loci that determine fitness.

    Article  CAS  PubMed  Google Scholar 

  • Chawla, B., Bernatzky, R., Liang, W. & Marcotrigiano, M. Breakdown of self-incompatibility in tetraploid Lycopersicon peruvianum: inheritance and expression of S-related proteins. Theor. Appl. Genet. 95, 992–996 (1997).

    Article  CAS  Google Scholar 

  • Miller, J. S. & Venable, D. L. Polyploidy and the evolution of gender dimorphism. Science 289, 2335–2338 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Willis, J. H. Effects of different levels of inbreeding on fitness components in Mimulus guttatus. Evolution 47, 864–876 (1993).

    Article  PubMed  Google Scholar 

  • Carr, D. E. & Dudash, M. R. The effects of five generations of enforced selfing on potential male and female function. Evolution 51, 1797–1807 (1997).

    Article  PubMed  Google Scholar 

  • Eckert, C. G. Contributions of autogamy and geitonogamy to self-fertilization in a mass flowering, clonal plant. Ecology 81, 532–542 (2000).

    Article  Google Scholar 

  • Reusch, T. B. H. Fitness-consequences of geitonogamous selfing in a clonal marine angiosperm (Zostera marina). J. Evol. Biol. 14, 129–138 (2001).A pioneering study that uses microsatellites to estimate mating patterns and provides evidence that clonal reproduction promotes geitonogamous selfing.

    Article  CAS  PubMed  Google Scholar 

  • Harder, L. D. & Wilson, W. G. A clarification of pollen discounting and its joint effects with inbreeding depression on mating system evolution. Am. Nat. 152, 684–695 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Harder, L. D. & Barrett, S. C. H. Mating cost of large floral displays in hermaphrodite plants. Nature 373, 512–515 (1995).The first experimental evidence that large floral displays can exert a male mating cost as a result of geitonogamous pollen discounting, with important implications for floral evolution.

    Article  CAS  Google Scholar 

  • Harder, L. D., Barrett, S. C. H. & Cole, W. W. The mating consequences of sexual segregation within inflorescences of flowering plants. Proc. R. Soc. Lond. B 267, 315–320 (2000).

    Article  CAS  Google Scholar 

  • Dorken, M. E., Friedman, J. E. & Barrett, S. C. H. The evolution and maintenance of monoecy and dioecy in Sagittaria latifolia. Evolution 56, 31–41 (2002).

    Article  PubMed  Google Scholar 

  • Heilbuth, J. Lower species richness in dioecious clades. Am. Nat. 156, 221–241 (2000).By using sister-group comparisons, this study provides the first evidence in plants of differences in species richness between clades with contrasting sexual systems.

    Article  PubMed  Google Scholar 

  • Heilbuth, J., Ilves, K. L. & Otto, S. P. The consequences of dioecy for seed dispersal: modeling the seed-shadow handicap. Evolution 55, 880–888 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Johnson, S. D., Linder, H. P. & Steiner, K. E. Phylogeny and radiation of pollination systems in Disa (Orchidaceae). Am. J. Bot. 85, 402–411 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Hodges, S. A. & Arnold, M. L. Spurring plant diversification: are floral nectar spurs a key innovation? Proc. R. Soc. Lond. B 262, 343–348 (1995).

    Article  Google Scholar 

  • Kohn, J. R., Graham, S. W., Morton, B., Doyle, J. J. & Barrett, S. C. H. Reconstruction of the evolution of reproductive characters in Pontederiaceae using phylogenetic evidence from chloroplast DNA restriction-site variation. Evolution 50, 1454–1469 (1996).

    PubMed  Google Scholar 

  • Schoen, D. J., Johnston, M. O., L'Heureux, A. & Marsolais, J. V. Evolutionary history of the mating system in Amsinckia (Boraginaceae). Evolution 51, 1090–1099 (1997).

    Article  PubMed  Google Scholar 

  • Goodwillie, C. Multiple origins of self-compatibility in Linanthus section Leptosiphon (Polemoniaceae): phylogenetic evidence from internal-transcribed-spacer sequence data. Evolution 53, 1387–1395 (1999).References 69–71 use molecular data to reconstruct the phylogenetic histories of outcrossing and selfing in different taxa of flowering plants — all three studies show multiple origins of selfing from outcrossing.

    PubMed  Google Scholar 

  • Charlesworth, D. & Charlesworth, B. Quantitative genetics in plants: the effects of breeding systems on genetic variability. Evolution 49, 911–920 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Hamrick, J. L. & Godt, M. J. W. Effects of life history traits on genetic diversity in plant species. Phil. Trans. R. Soc. Lond. B 351, 1291–1298 (1996).

    Article  Google Scholar 

  • Liu, F., Charlesworth, D. & Kreitman, M. The effect of mating system differences on nucleotide diversity at the phosphoglucose isomerase locus in the plant genus Leavenworthia. Genetics 151, 343–357 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savolainen, O., Langley, C. H., Lazzaro, B. P. & Freville, H. Contrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana. Mol. Biol. Evol. 17, 645–655 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Takebayashi, N. & Morrell, P. Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Am. J. Bot. 88, 1143–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Pannell, J. R. & Barrett, S. C. H. Baker's law revisited: reproductive assurance in a metapopulation. Evolution 53, 664–676 (1998).

    Article  Google Scholar 

  • Lande, R. & Schemske, D. W. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39, 24–40 (1985).This paper, and reference 11 , stimulated a large amount of theoretical and empirical work on the joint evolution of inbreeding depression and mating systems in plants.

    PubMed  Google Scholar 

  • Uyenoyama, M. K., Holsinger, K. E. & Waller, D. M. Ecological and genetic factors directing the evolution of self-fertilization. Oxf. Surv. Evol. Biol. 9, 327–381 (1993).

    Google Scholar 

  • Vogler, D. W. & Kalisz, S. Sex among the flowers: the distribution of plant mating systems. Evolution 55, 202–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Barrett, S. C. H. & Husband, B. C. Variation in outcrossing rates in Eichhornia paniculata: the role of demographic and reproductive factors. Plant Species Biol. 5, 41–56 (1990).

    Article  Google Scholar 

  • Dole, J. & Ritland, K. Inbreeding depression in two Mimulus taxa measured by multigenerational changes in the inbreeding coefficient. Evolution 47, 361–373 (1993).The first application of genetic markers to infer levels of inbreeding depression in the field.

    Article  PubMed  Google Scholar 

  • Eckert, C. G. & Barrett, S. C. H. Inbreeding depression in partially self-fertilizing Decodon verticillatus (Lythraceae): population genetic and experimental analyses. Evolution 48, 952–964 (1994).

    Article  PubMed  Google Scholar 

  • Husband, B. C. & Schemske, D. W. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50, 54–70 (1996).

    Article  PubMed  Google Scholar 

  • Sage, T. L., Strumas, F., Cole, W. W. & Barrett, S. C. H. Differential ovule development following self- and cross-fertilization: the basis of self-sterility in Narcissus triandrus (Amaryllidaceae). Am. J. Bot. 86, 855–870 (1999).The discovery of a unique form of self-incompatibility in plants that operates through differential ovule development after cross-pollination as opposed to self-pollination.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, S. C. H. Sexual interference of the floral kind. Heredity 88, 154–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Fishman, L. & Wyatt, R. Pollinator-mediated competition, reproductive character displacement, and the evolution of selfing in Arenaria uniflora (Caryophyllaceae). Evolution 53, 1723–1733 (1999).

    PubMed  Google Scholar 

  • Schoen, D. J., Morgan, M. T. & Batallion, T. How does self-pollination evolve? Inferences from floral ecology and molecular genetic variation. Phil. Trans. R. Soc. Lond. B 351, 1281–1290 (1996).

    Article  Google Scholar 

  • Herlihy, C. R. & Eckert, C. G. Genetic cost of reproductive assurance in a self-fertilizing plant. Nature 415 (in the press).The first experimental evidence for seed discounting in plants.

  • Lloyd, D. G. Self and cross-fertilization in plants. II. The selection of self-fertilization. Int. J. Plant Sci. 153, 370–382 (1992).

    Article  Google Scholar 

  • Reusch, T. B. H. Pollination in the marine realm: microsatellites reveal high outcrossing rates and multiple paternity in eelgrass Zostera marina. Heredity 85, 459–464 (2000).

    Article  PubMed  Google Scholar 

  • Pagel, M. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48, 612–622 (1999).

    Article  Google Scholar 

  • Templeton, A. R. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol. Ecol. 7, 381–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, D. & Pannell, J. R. in Integrating Ecology and Evolution in a Spatial Context (eds Silvertown, J. & Antonovics, J.) 73–95 (Blackwell Science, Oxford, 2001).

    Google Scholar 

  • Bradshaw, H. D. Jr, Otto, K. G., Frewen, B. E., McKay, J. K. & Schemske, D. W. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflowers (Mimulus). Genetics 149, 367–382 (1998).A more detailed sequel to the authors' 1995 Nature paper, this publication confirms that a small number of genes of large effect contribute towards reproductive isolation between two species of monkeyflower serviced by different pollinators.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishbein, M. & Venable, D. L. Evolution of inflorescence design: theory and data. Evolution 50, 2165–2177 (1996).

    Article  PubMed  Google Scholar 

  • Worley, A. C. & Barrett, S. C. H. Evolution of floral display in Eichhornia paniculata (Pontederiaceae): direct and correlated response to selection on flower size and number. Evolution 54, 1533–1545 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Venable, D. L. Packaging and provisioning in plant reproduction. Phil. Trans. R. Soc. Lond. B 351, 1319–1329 (1996).

    Article  Google Scholar 

  • Pannell, J. P. Mixed genetic and environmental sex determination in an androdioecious population of Mercurialis annua. Heredity 78, 50–56 (1997).

    Article  CAS  PubMed  Google Scholar