nature.com

The role of the gut microbiota in nonalcoholic fatty liver disease - Nature Reviews Gastroenterology & Hepatology

  • ️Quigley, Eamonn M. M.
  • ️Tue Nov 02 2010
  • Hoefert, B. Über die bakterienbefunde im duodenalsaft von gesunden und kranken. Zschr. Klin. Med. 92, 221–235 (1921).

    Google Scholar 

  • Quigley, E. M. Gastrointestinal dysfunction in liver disease and portal hypertension. Gut–liver interactions revisited. Dig. Dis. Sci. 41, 557–561 (1996).

    CAS  PubMed  Google Scholar 

  • Yang, C. Y., Chang, C. S. & Chen, G. H. Small-intestinal bacterial overgrowth in patients with liver cirrhosis, diagnosed with glucose H2 or CH4 breath tests. Scand. J. Gastroenterol. 33, 867–871 (1998).

    CAS  PubMed  Google Scholar 

  • Chesta, J., Silva, M., Thompson, L., del Canto, E. & Defilippi, C. Bacterial overgrowth in small intestine in patients with liver cirrhosis [Spanish]. Rev. Med. Chil. 119, 626–632 (1991).

    CAS  PubMed  Google Scholar 

  • Casafont, F., Almohalla, C., Garcia Pajares, F. & Pons Romero, F. Intestinal bacteria overgrowth in chronic hepatopathies [Spanish]. Rev. Med. Univ. Navarra 42, 183–187 (1998).

    CAS  PubMed  Google Scholar 

  • Madrid, A. M., Hurtado, C., Venegas, M., Cumsille, F. & Defilippi, C. Long-term treatment with cisapride and antibiotics in liver cirrhosis: effect on small intestinal motility, bacterial overgrowth, and liver function. Am. J. Gastroenterol. 96, 1251–1255 (2001).

    CAS  PubMed  Google Scholar 

  • Madrid, A. M., Cumsille, F. & Defilippi, C. Altered small bowel motility in patients with liver cirrhosis depends on severity of liver disease. Dig. Dis. Sci. 42, 738–742 (1997).

    CAS  PubMed  Google Scholar 

  • Chesta, J. et al. Patients with liver cirrhosis: mouth–cecum transit time and gastric emptying of solid foods [Spanish]. Rev. Med. Chil. 119, 1248–1253 (1991).

    CAS  PubMed  Google Scholar 

  • Park, C. H. et al. Neostigmine for the treatment of acute hepatic encephalopathy with acute intestinal pseudo-obstruction in a cirrhotic patient. J. Korean Med. Sci. 20, 150–152 (2005).

    PubMed  PubMed Central  Google Scholar 

  • Aldersley, M. A. & Howdle, P. D. Intestinal permeability and liver disease. Eur. J. Gastroenterol. Hepatol. 11, 401–403 (1999).

    CAS  PubMed  Google Scholar 

  • Bouin, M. et al. Increased oro-cecal transit time in grade I or II hepatic encephalopathy. Gastroenterol. Clin. Biol. 28, 1240–1244 (2004).

    PubMed  Google Scholar 

  • Maheshwari, A., Thomas, A. & Thuluvath, P. J. Patients with autonomic neuropathy are more likely to develop hepatic encephalopathy. Dig. Dis. Sci. 49, 1584–1588 (2004).

    PubMed  Google Scholar 

  • Toh, Y. et al. Assessing the permeability of the gastrointestinal mucosa after oral administration of phenolsulfonphthalein. Hepatogastroenterology 44, 1147–1151 (1997).

    CAS  PubMed  Google Scholar 

  • Keshavarzian, A. et al. Leaky gut in alcoholic cirrhosis: a possible mechanism for alcohol-induced liver damage. Am. J. Gastroenterol. 94, 200–207 (1999).

    CAS  PubMed  Google Scholar 

  • Thalheimer, U. et al. Altered intestinal function precedes the appearance of bacterial DNA in serum and ascites in patients with cirrhosis: a pilot study. Eur. J. Gastroenterol. Hepatol. 22, 1228–1234 (2010).

    PubMed  Google Scholar 

  • González Alonso, R., González García, M. & Albillos Martínez, A. Physiopathology of bacterial translocation and spontaneous bacterial peritonitis in cirrhosis [Spanish]. Gastroenterol. Hepatol. 30, 78–84 (2007).

    PubMed  Google Scholar 

  • Nolan, J. P. Intestinal endotoxins as mediators of hepatic injury—an idea whose time has come again. Hepatology 10, 887–891 (1989).

    CAS  PubMed  Google Scholar 

  • Kirsch, R. et al. Rodent nutritional model of steatohepatitis: effects of endotoxin (lipopolysaccharide) and tumor necrosis factor α deficiency. J. Gastroenterol. Hepatol. 21, 174–182 (2006).

    CAS  PubMed  Google Scholar 

  • Fabbrini, E., Sullivan, S. & Klein, S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51, 679–689 (2010).

    CAS  PubMed  Google Scholar 

  • Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    PubMed  PubMed Central  Google Scholar 

  • Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    PubMed  PubMed Central  Google Scholar 

  • Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  • Bajzer, M. & Seeley, R. J. Physiology: obesity and gut flora. Nature 444, 1009–1010 (2006).

    CAS  PubMed  Google Scholar 

  • Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    CAS  PubMed  Google Scholar 

  • Zhang, H. et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci. USA 106, 2365–2370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalliomäki, M., Collado, M. C., Salminen, S. & Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 87, 534–538 (2008).

    PubMed  Google Scholar 

  • Webb, P. & Annis, J. F. Adaptation to overeating in lean and overweight men and women. Hum. Nutr. Clin. Nutr. 37, 117–131 (1983).

    CAS  PubMed  Google Scholar 

  • Comstock, L. E. & Coyne, M. J. Bacteroides thetaiotaomicron: a dynamic, niche-adapted human symbiont. Bioessays 25, 926–929 (2003).

    CAS  PubMed  Google Scholar 

  • Samuel, B. S. & Gordon, J. I. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc. Natl Acad. Sci. USA 103, 10011–10016 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    PubMed  PubMed Central  Google Scholar 

  • Jones, B. V., Begley, M., Hill, C., Gahan, C. G. & Marchesi, J. R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl Acad. Sci. USA 105, 13580–13585 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo-Zúñiga, V. et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 37, 551–557 (2003).

    PubMed  Google Scholar 

  • Ogata, Y. et al. Role of bile in intestinal barrier function and its inhibitory effect on bacterial translocation in obstructive jaundice in rats. J. Surg. Res. 115, 18–23 (2003).

    CAS  PubMed  Google Scholar 

  • Houten, S. M., Watanabe, M. & Auwerx, J. Endocrine functions of bile acids. EMBO J. 25, 1419–1425 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, F. P. et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3, 112 (2007).

    PubMed  PubMed Central  Google Scholar 

  • Pagano, G. et al. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association. Hepatology 35, 367–372 (2002).

    CAS  PubMed  Google Scholar 

  • Farrell, G. C. Signalling links in the liver: knitting SOCS with fat and inflammation. J. Hepatol. 43, 193–196 (2005).

    CAS  PubMed  Google Scholar 

  • Li, Z. et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 37, 343–350 (2003).

    CAS  PubMed  Google Scholar 

  • Brun, P. et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G518–G525 (2007).

    CAS  PubMed  Google Scholar 

  • Kim, J. J. & Sears, D. D. TLR4 and insulin resistance. Gastroenterol. Res. Pract. doi:10.1155/2010/212563.

    Google Scholar 

  • Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    CAS  PubMed  Google Scholar 

  • Creely, S. J. et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292, E740–E747 (2007).

    CAS  PubMed  Google Scholar 

  • Peraldi, P. & Spiegelman, B. TNF-α and insulin resistance: summary and future prospects. Mol. Cell Biochem. 182, 169–175 (1998).

    CAS  PubMed  Google Scholar 

  • Chou, C. J., Membrez, M. & Blancher, F. Gut decontamination with norfloxacin and ampicillin enhances insulin sensitivity in mice. Nestle Nutr. Workshop Ser. Pediatr. Program. 62, 127–140 (2008).

    CAS  PubMed  Google Scholar 

  • Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    CAS  PubMed  Google Scholar 

  • Schwartz, R. F., Neu, J., Schatz, D., Atkinson, M. A. & Wasserfall, C. Comment on: Brugman, S. et al. (2006) Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 49, 2105–2108. Diabetologia 50, 220–221 (2007).

    CAS  PubMed  Google Scholar 

  • Wen, L. et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455, 1109–1113 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brugman, S. et al. Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 49, 2105–2108 (2006).

    CAS  PubMed  Google Scholar 

  • Calcinaro, F. et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia 48, 1565–1575 (2005).

    CAS  PubMed  Google Scholar 

  • Buchman, A. L. et al. Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatology 22, 1399–1403 (1995).

    CAS  PubMed  Google Scholar 

  • Teramoto, K., Bowers, J. L., Khettry, U., Palombo, J. D. & Clouse, M. E. A rat fatty liver transplant model. Transplantation 55, 737–741 (1993).

    CAS  PubMed  Google Scholar 

  • Weltman, M. D., Farrell, G. C. & Liddle, C. Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology 111, 1645–1653 (1996).

    CAS  PubMed  Google Scholar 

  • Zeisel, S. H., Wishnok, J. S. & Blusztajn, J. K. Formation of methylamines from ingested choline and lecithin. J. Pharmacol. Exp. Ther. 225, 320–324 (1983).

    CAS  PubMed  Google Scholar 

  • Nicholson, J. K. & Wilson, I. D. Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 2, 668–676 (2003).

    CAS  PubMed  Google Scholar 

  • Lang, D. H. et al. Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3. Biochem. Pharmacol. 56, 1005–1012 (1998).

    CAS  PubMed  Google Scholar 

  • al-Waiz, M., Mikov, M., Mitchell, S. C. & Smith, R. L. The exogenous origin of trimethylamine in the mouse. Metabolism 41, 135–136 (1992).

    CAS  PubMed  Google Scholar 

  • Dumas, M. E. et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl Acad. Sci. USA 103, 12511–12516 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fassio, E., Alvarez, E., Domínguez, N., Landeira, G. & Longo, C. Natural history of nonalcoholic steatohepatitis: a longitudinal study of repeat liver biopsies. Hepatology 40, 820–826 (2004).

    PubMed  Google Scholar 

  • Harrison, S. A., Torgerson, S. & Hayashi, P. H. The natural history of nonalcoholic fatty liver disease: a clinical histopathological study. Am. J. Gastroenterol. 98, 2042–2047 (2003).

    PubMed  Google Scholar 

  • Bugianesi, E. et al. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123, 134–140 (2002).

    PubMed  Google Scholar 

  • Quigley, E. M., Marsh, M. N., Shaffer, J. L. & Markin, R. S. Hepatobiliary complications of total parenteral nutrition. Gastroenterology 104, 286–301 (1993).

    CAS  PubMed  Google Scholar 

  • Carter, B. A. & Karpen, S. J. Intestinal failure-associated liver disease: management and treatment strategies past, present, and future. Semin. Liver Dis. 27, 251–258 (2007).

    CAS  PubMed  Google Scholar 

  • Pappo, I. et al. Polymyxin B reduces total parenteral nutrition-associated hepatic steatosis by its antibacterial activity and by blocking deleterious effects of lipopolysaccharide. JPEN J. Parenter. Enteral Nutr. 16, 529–532 (1992).

    CAS  PubMed  Google Scholar 

  • Soza, A. et al. Increased orocecal transit time in patients with nonalcoholic fatty liver disease. Dig. Dis. Sci. 50, 1136–1140 (2005).

    PubMed  Google Scholar 

  • Cope, K., Risby, T. & Diehl, A. M. Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis. Gastroenterology 119, 1340–1347 (2000).

    CAS  PubMed  Google Scholar 

  • Fan, J. G., Xu, Z. J. & Wang, G. L. Effect of lactulose on establishment of a rat non-alcoholic steatohepatitis model. World J. Gastroenterol. 11, 5053–5056 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corrodi, P. Jejunoileal bypass: change in the flora of the small intestine and its clinical impact. Rev. Infect. Dis. 6 (Suppl. 1), S80–S84 (1984).

    PubMed  Google Scholar 

  • Vanderhoof, J. A., Tuma, D. J., Antonson, D. L. & Sorrell, M. F. Effect of antibiotics in the prevention of jejunoileal bypass-induced liver dysfunction. Digestion 23, 9–15 (1982).

    CAS  PubMed  Google Scholar 

  • Drenick, E. J., Fisler, J. & Johnson, D. Hepatic steatosis after intestinal bypass—prevention and reversal by metronidazole, irrespective of protein-calorie malnutrition. Gastroenterology 82, 535–548 (1982).

    CAS  PubMed  Google Scholar 

  • Kim, W. R. et al. Recurrence of nonalcoholic steatohepatitis following liver transplantation. Transplantation 62, 1802–1805 (1996).

    CAS  PubMed  Google Scholar 

  • Lichtman, S. N., Keku, J., Schwab, J. H. & Sartor, R. B. Hepatic injury associated with small bowel bacterial overgrowth in rats is prevented by metronidazole and tetracycline. Gastroenterology 100, 513–519 (1991).

    CAS  PubMed  Google Scholar 

  • Nazim, M., Stamp, G. & Hodgson, H. J. Non-alcoholic steatohepatitis associated with small intestinal diverticulosis and bacterial overgrowth. Hepatogastroenterology 36, 349–351 (1989).

    CAS  PubMed  Google Scholar 

  • Crowell, M. D., Cheskin, L. J. & Musial, F. Prevalence of gastrointestinal symptoms in obese and normal weight binge eaters. Am. J. Gastroenterol. 89, 387–391 (1994).

    CAS  PubMed  Google Scholar 

  • Verne, G. N. & Sninsky, C. A. Diabetes and the gastrointestinal tract. Gastroenterol. Clin. North Am. 27, 861–874, vi–vii (1998).

    CAS  PubMed  Google Scholar 

  • Cuoco, L. et al. Eradication of small intestinal bacterial overgrowth and oro-cecal transit in diabetics. Hepatogastroenterology 49, 1582–1586 (2002).

    PubMed  Google Scholar 

  • Basilisco, G. et al. Orocecal transit delay in obese patients. Dig. Dis. Sci. 34, 509–512 (1989).

    CAS  PubMed  Google Scholar 

  • Castañeda, T. R., Tong, J., Datta, R., Culler, M. & Tschöp, M. H. Ghrelin in the regulation of body weight and metabolism. Front. Neuroendocrinol. 31, 44–60 (2010).

    PubMed  Google Scholar 

  • Camilleri, M., Papathanasopoulos, A. & Odunsi, S. T. Actions and therapeutic pathways of ghrelin for gastrointestinal disorders. Nat. Rev. Gastroenterol. Hepatol. 6, 343–352 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sajjad, A. et al. Ciprofloxacin suppresses bacterial overgrowth, increases fasting insulin but does not correct low acylated ghrelin concentration in non-alcoholic steatohepatitis. Aliment Pharmacol. Ther. 22, 291–299 (2005).

    CAS  PubMed  Google Scholar 

  • Yalniz, M. et al. Serum adipokine and ghrelin levels in nonalcoholic steatohepatitis. Mediators Inflamm. 2006, 34295 (2006).

    PubMed  PubMed Central  Google Scholar 

  • Wigg, A. J. et al. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48, 206–211 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abu-Shanab, A. et al. Small intestinal bacterial overgrowth in non-alcoholic steato-hepatitis; association with Toll-like receptor 4 expression and plasma levels of interleukin 8. Dig Dis. Sci. (2010) (in press).

  • Fu, X. S. & Jiang, F. Cisapride decreasing orocecal transit time in patients with nonalcoholic steatohepatitis. Hepatobiliary Pancreat. Dis. Int. 5, 534–537 (2006).

    CAS  PubMed  Google Scholar 

  • Riordan, S. M. et al. Small intestinal bacterial overgrowth, intestinal permeability, and non-alcoholic steatohepatitis. Gut 50, 136–138 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miele, L. et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49, 1877–1887 (2009).

    CAS  PubMed  Google Scholar 

  • Solga, S. F. & Diehl, A. M. Non-alcoholic fatty liver disease: lumen-liver interactions and possible role for probiotics. J. Hepatol. 38, 681–687 (2003).

    CAS  PubMed  Google Scholar 

  • Neal, M. D. et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J. Immunol. 176, 3070–3079 (2006).

    CAS  PubMed  Google Scholar 

  • Amar, J. et al. Energy intake is associated with endotoxemia in apparently healthy men. Am. J. Clin. Nutr. 87, 1219–1223 (2008).

    CAS  PubMed  Google Scholar 

  • Vreugdenhil, A. C. et al. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J. Immunol. 170, 1399–1405 (2003).

    CAS  PubMed  Google Scholar 

  • Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. & Mathison, J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    CAS  PubMed  Google Scholar 

  • Beutler, B., Hoebe, K., Du, X. & Ulevitch, R. J. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J. Leukoc. Biol. 74, 479–485 (2003).

    CAS  PubMed  Google Scholar 

  • Yudkin, J. S., Stehouwer, C. D., Emeis, J. J. & Coppack, S. W. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vasc. Biol. 19, 972–978 (1999).

    CAS  PubMed  Google Scholar 

  • Dandona, P. et al. Tumor necrosis factor-α in sera of obese patients: fall with weight loss. J. Clin. Endocrinol. Metab. 83, 2907–2910 (1998).

    CAS  PubMed  Google Scholar 

  • Zahorska-Markiewicz, B., Janowska, J., Olszanecka-Glinianowicz, M. & Zurakowski, A. Serum concentrations of TNF-α and soluble TNF-α receptors in obesity. Int. J. Obes. Relat. Metab. Disord. 24, 1392–1395 (2000).

    CAS  PubMed  Google Scholar 

  • Hotamisligil, G. S., Murray, D. L., Choy, L. N. & Spiegelman, B. M. Tumor necrosis factor α inhibits signaling from the insulin receptor. Proc. Natl Acad. Sci. USA 91, 4854–4858 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feinstein, R., Kanety, H., Papa, M. Z., Lunenfeld, B. & Karasik, A. Tumor necrosis factor-α suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J. Biol. Chem. 268, 26055–26058 (1993).

    CAS  PubMed  Google Scholar 

  • del Aguila, L. F., Claffey, K. P. & Kirwan, J. P. TNF-α impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells. Am. J. Physiol. 276, E849–E855 (1999).

    CAS  PubMed  Google Scholar 

  • Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997).

    CAS  PubMed  Google Scholar 

  • Diehl, A. M. Cytokine regulation of liver injury and repair. Immunol. Rev. 174, 160–171 (2000).

    CAS  PubMed  Google Scholar 

  • Yang, S. Q., Lin, H. Z., Lane, M. D., Clemens, M. & Diehl, A. M. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc. Natl Acad. Sci. USA 94, 2557–2562 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tobias, P. S., Soldau, K., Gegner, J. A., Mintz, D. & Ulevitch, R. J. Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J. Biol. Chem. 270, 10482–10488 (1995).

    CAS  PubMed  Google Scholar 

  • Su, G. L. Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G256–G265 (2002).

    CAS  PubMed  Google Scholar 

  • Baldwin, A. S. Jr. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–683 (1996).

    CAS  PubMed  Google Scholar 

  • Ruiz, A. G. et al. Lipopolysaccharide-binding protein plasma levels and liver TNF-α gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes. Surg. 17, 1374–1380 (2007).

    PubMed  Google Scholar 

  • Szabo, G., Velayudham, A., Romics, L. Jr & Mandrekar, P. Modulation of non-alcoholic steatohepatitis by pattern recognition receptors in mice: the role of Toll-like receptors 2 and 4. Alcohol Clin. Exp. Res. 29 (11 Suppl.), 140S–145S (2005).

  • Rivera, C. A. et al. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J. Hepatol. 47, 571–579 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iimuro, Y., Gallucci, R. M., Luster, M. I., Kono, H. & Thurman, R. G. Antibodies to tumor necrosis factor α attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat. Hepatology 26, 1530–1537 (1997).

    CAS  PubMed  Google Scholar 

  • Brun, P., Castagliuolo, I., Pinzani, M., Palù, G. & Martines, D. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G571–G578 (2005).

    CAS  PubMed  Google Scholar 

  • Paik, Y. H. et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 37, 1043–1055 (2003).

    CAS  PubMed  Google Scholar 

  • Bataller, R. & Brenner, D. A. Liver fibrosis. J. Clin. Invest. 115, 209–218 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mezey, E. in Schiff's Diseases of the Liver (eds Schiff, E. R., Sorrell, M. F. & Maddrey, W. C.) 1185–1197 (Lippincott-Raven, Philadelphia, 1999).

    Google Scholar 

  • Faggioni, R. et al. Leptin deficiency enhances sensitivity to endotoxin-induced lethality. Am. J. Physiol. 276, R136–R142 (1999).

    CAS  PubMed  Google Scholar 

  • Gustot, T. et al. Differential liver sensitization to Toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology 43, 989–1000 (2006).

    CAS  PubMed  Google Scholar 

  • Baraona, E., Julkunen, R., Tannenbaum, L. & Lieber, C. S. Role of intestinal bacterial overgrowth in ethanol production and metabolism in rats. Gastroenterology 90, 103–110 (1986).

    CAS  PubMed  Google Scholar 

  • Adachi, Y., Moore, L. E., Bradford, B. U., Gao, W. & Thurman, R. G. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 108, 218–224 (1995).

    CAS  PubMed  Google Scholar 

  • Nair, S., Cope, K., Risby, T. H. & Diehl, A. M. Obesity and female gender increase breath ethanol concentration: potential implications for the pathogenesis of nonalcoholic steatohepatitis. Am. J. Gastroenterol. 96, 1200–1204 (2001).

    CAS  PubMed  Google Scholar 

  • Cani, P. D. & Delzenne, N. M. The role of the gut microbiota in energy metabolism and metabolic disease. Curr. Pharm. Des. 15, 1546–1558 (2009).

    CAS  PubMed  Google Scholar 

  • Cani, P. D., Dewever, C. & Delzenne, N. M. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br. J. Nutr. 92, 521–526 (2004).

    CAS  PubMed  Google Scholar 

  • Cani, P. D., Neyrinck, A. M., Maton, N. & Delzenne, N. M. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide-1. Obes. Res. 13, 1000–1007 (2005).

    CAS  PubMed  Google Scholar 

  • Delzenne, N. M., Cani, P. D., Daubioul, C. & Neyrinck, A. M. Impact of inulin and oligofructose on gastrointestinal peptides. Br. J. Nutr. 93 (Suppl. 1), S157–S161 (2005).

    CAS  PubMed  Google Scholar 

  • Archer, B. J., Johnson, S. K., Devereux, H. M. & Baxter, A. L. Effect of fat replacement by inulin or lupin-kernel fibre on sausage patty acceptability, post-meal perceptions of satiety and food intake in men. Br. J. Nutr. 91, 591–599 (2004).

    CAS  PubMed  Google Scholar 

  • Cani, P. D., Joly, E., Horsmans, Y. & Delzenne, N. M. Oligofructose promotes satiety in healthy human: a pilot study. Eur. J. Clin. Nutr. 60, 567–572 (2006).

    CAS  PubMed  Google Scholar 

  • Hildebrandt, M. A. et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137, 1716–1724 (2009).

    CAS  PubMed  Google Scholar 

  • Martin, F. P. et al. Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 4, 157 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Qing, L. & Wang, T. Lactic acid bacteria prevent alcohol-induced steatohepatitis in rats by acting on the pathways of alcohol metabolism. Clin. Exp. Med. 8, 187–191 (2008).

    PubMed  Google Scholar 

  • Marotta, F. et al. Experimental acute alcohol pancreatitis-related liver damage and endotoxemia: synbiotics but not metronidazole have a protective effect. Chin. J. Dig. Dis. 6, 193–197 (2005).

    CAS  PubMed  Google Scholar 

  • Forsyth, C. B. et al. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 43, 163–172 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cani, P. D. et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50, 2374–2383 (2007).

    CAS  PubMed  Google Scholar 

  • Stadlbauer, V. et al. Effect of probiotic treatment on deranged neutrophil function and cytokine responses in patients with compensated alcoholic cirrhosis. J. Hepatol. 48, 945–951 (2008).

    CAS  PubMed  Google Scholar 

  • Salminen, S. & Salminen, E. Lactulose, lactic acid bacteria, intestinal microecology and mucosal protection. Scand. J. Gastroenterol. Suppl. 222, 45–48 (1997).

    CAS  PubMed  Google Scholar 

  • Loguercio, C. et al. Gut–liver axis: a new point of attack to treat chronic liver damage? Am. J. Gastroenterol. 97, 2144–2146 (2002).

    PubMed  Google Scholar 

  • Al-Salami, H. et al. Probiotic treatment reduces blood glucose levels and increases systemic absorption of gliclazide in diabetic rats. Eur. J. Drug Metab. Pharmacokinet. 33, 101–106 (2008).

    CAS  PubMed  Google Scholar 

  • De Smet, I., De Boever, P. & Verstraete, W. Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. Br. J. Nutr. 79, 185–194 (1998).

    CAS  PubMed  Google Scholar 

  • Armstrong, M. J. & Carey, M. C. The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities. J. Lipid Res. 23, 70–80 (1982).

    CAS  PubMed  Google Scholar 

  • Heuman, D. M. Quantitative estimation of the hydrophilic–hydrophobic balance of mixed bile salt solutions. J. Lipid Res. 30, 719–730 (1989).

    CAS  PubMed  Google Scholar 

  • Heuman, D. M., Hylemon, P. B. & Vlahcevic, Z. R. Regulation of bile acid synthesis. III. Correlation between biliary bile salt hydrophobicity index and the activities of enzymes regulating cholesterol and bile acid synthesis in the rat. J. Lipid Res. 30, 1161–1171 (1989).

    CAS  PubMed  Google Scholar 

  • Narushima, S., Ito, K., Kuruma, K. & Uchida, K. Composition of cecal bile acids in ex-germfree mice inoculated with human intestinal bacteria. Lipids 35, 639–644 (2000).

    CAS  PubMed  Google Scholar 

  • Tannock, G. W. A special fondness for lactobacilli. Appl. Environ. Microbiol. 70, 3189–3194 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terahara, M., Nishide, S. & Kaneko, T. Preventive effect of Lactobacillus delbrueckii subsp. bulgaricus on the oxidation of LDL. Biosci. Biotechnol. Biochem. 64, 1868–1873 (2000).

    CAS  PubMed  Google Scholar 

  • Xiao, J. Z. et al. Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J. Dairy Sci. 86, 2452–2461 (2003).

    CAS  PubMed  Google Scholar 

  • Pereira, D. I. & Gibson, G. R. Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit. Rev. Biochem. Mol. Biol. 37, 259–281 (2002).

    CAS  PubMed  Google Scholar 

  • Larkin, T. A., Astheimer, L. B. & Price, W. E. Dietary combination of soy with a probiotic or prebiotic food significantly reduces total and LDL cholesterol in mildly hypercholesterolaemic subjects. Eur. J. Clin. Nutr. 63, 238–245 (2009).

    CAS  PubMed  Google Scholar 

  • Yadav, H., Jain, S. & Sinha, P. R. Oral administration of dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei delayed the progression of streptozotocin-induced diabetes in rats. J. Dairy Res. 75, 189–195 (2008).

    CAS  PubMed  Google Scholar 

  • Lee, H. Y. et al. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim. Biophys. Acta 1761, 736–744 (2006).

    CAS  PubMed  Google Scholar 

  • Wall, R. et al. Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am. J. Clin. Nutr. 89, 1393–1401 (2009).

    CAS  PubMed  Google Scholar 

  • Lee, Y. K. et al. Quantitative approach in the study of adhesion of lactic acid bacteria to intestinal cells and their competition with enterobacteria. Appl. Environ. Microbiol. 66, 3692–3697 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen, K. et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121, 580–591 (2001).

    CAS  PubMed  Google Scholar 

  • Resta-Lenert, S. & Barrett, K. E. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52, 988–997 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh, S., van Heel, D. & Playford, R. J. Probiotics in inflammatory bowel disease: is it all gut flora modulation? Gut 53, 620–622 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanauchi, O. et al. Increased growth of Bifidobacterium and Eubacterium by germinated barley foodstuff, accompanied by enhanced butyrate production in healthy volunteers. Int. J. Mol. Med. 3, 175–179 (1999).

    CAS  PubMed  Google Scholar 

  • Haller, D. et al. Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47, 79–87 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grönlund, M. M., Arvilommi, H., Kero, P., Lehtonen, O. P. & Isolauri, E. Importance of intestinal colonisation in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0–6 months. Arch. Dis. Child Fetal Neonatal Ed. 83, F186–F192 (2000).

    PubMed  PubMed Central  Google Scholar 

  • Eizaguirre, I. et al. Probiotic supplementation reduces the risk of bacterial translocation in experimental short bowel syndrome. J. Pediatr. Surg. 37, 699–702 (2002).

    CAS  PubMed  Google Scholar 

  • Chiva, M. et al. Effect of Lactobacillus johnsonii La1 and antioxidants on intestinal flora and bacterial translocation in rats with experimental cirrhosis. J. Hepatol. 37, 456–462 (2002).

    CAS  PubMed  Google Scholar 

  • Adawi, D., Kasravi, F. B., Molin, G. & Jeppsson, B. Effect of Lactobacillus supplementation with and without arginine on liver damage and bacterial translocation in an acute liver injury model in the rat. Hepatology 25, 642–647 (1997).

    CAS  PubMed  Google Scholar 

  • Adawi, D., Ahrné, S. & Molin, G. Effects of different probiotic strains of Lactobacillus and Bifidobacterium on bacterial translocation and liver injury in an acute liver injury model. Int. J. Food Microbiol. 70, 213–220 (2001).

    CAS  PubMed  Google Scholar 

  • Lirussi, F., Mastropasqua, E., Orando, S. & Orlando, R. Probiotics for non-alcoholic fatty liver disease and/or steatohepatitis. Cochrane Database Syst. Rev. Issue 1, Art. No.: CD005165. doi:10.1002/14651858.CD005165.pub2 (2007).