nature.com

Environmental triggers in IBD: a review of progress and evidence - Nature Reviews Gastroenterology & Hepatology

  • ️Fiocchi, Claudio
  • ️Wed Oct 11 2017
  • Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 205–217 (2015).

    PubMed  Google Scholar 

  • Kaplan, G. G. & Ng, S. C. Globalisation of inflammatory bowel disease: perspectives from the evolution of inflammatory bowel disease in the UK and China. Lancet Gastroenterol. Hepatol. 1, 307–316 (2016).

    PubMed  Google Scholar 

  • Kaplan, G. G. & Ng, S. C. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 152, 313–321.e2 (2017).

    PubMed  Google Scholar 

  • Burke, K. E., Boumitri, C. & Ananthakrishnan, A. N. Modifiable environmental factors in inflammatory bowel disease. Curr. Gastroenterol. Rep. 19, 21 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Ng, S. C. et al. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut 62, 630–649 (2013).

    PubMed  Google Scholar 

  • Ng, S. C. et al. Environmental risk factors in inflammatory bowel disease: a population-based case-control study in Asia-Pacific. Gut 64, 1063–1071 (2015).

    PubMed  Google Scholar 

  • Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahrstrom, C. T., Pariente, N. & Weiss, U. Intestinal microbiota in health and disease. Nature 535, 47 (2016).

    CAS  PubMed  Google Scholar 

  • Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    CAS  PubMed  Google Scholar 

  • Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turpin, W. et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 48, 1413–1417 (2016).

    CAS  PubMed  Google Scholar 

  • Endt, K. et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog. 6, e1001097 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15, 382–392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes, J. D., Van Domselaar, G. & Bernstein, C. N. Microbiome survey of the inflamed and noninflamed gut at different compartments within the gastrointestinal tract of inflammatory bowel disease patients. Inflamm. Bowel Dis. 22, 817–825 (2016).

    PubMed  Google Scholar 

  • Miyoshi, J. & Chang, E. B. The gut microbiota and inflammatory bowel diseases. Transl Res. 179, 38–48 (2017).

    PubMed  Google Scholar 

  • Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kronman, M. P., Zaoutis, T. E., Haynes, K., Feng, R. & Coffin, S. E. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics 130, e794–e803 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).

    CAS  PubMed  Google Scholar 

  • Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Ungaro, R. et al. Antibiotics associated with increased risk of new-onset Crohn's disease but not ulcerative colitis: a meta-analysis. Am. J. Gastroenterol. 109, 1728–1738 (2014).

    CAS  PubMed  Google Scholar 

  • Shaw, S. Y., Blanchard, J. F. & Bernstein, C. N. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am. J. Gastroenterol. 105, 2687–2692 (2010).

    PubMed  Google Scholar 

  • Shaw, S. Y., Blanchard, J. F. & Bernstein, C. N. Association between early childhood otitis media and pediatric inflammatory bowel disease: an exploratory population-based analysis. J. Pediatr. 162, 510–514 (2013).

    PubMed  Google Scholar 

  • Shaw, S. Y., Blanchard, J. F. & Bernstein, C. N. Association between the use of antibiotics and new diagnoses of Crohn's disease and ulcerative colitis. Am. J. Gastroenterol. 106, 2133–2142 (2011).

    PubMed  Google Scholar 

  • Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    PubMed  PubMed Central  Google Scholar 

  • Azad, M. B. et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 185, 385–394 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Azad, M. B. et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG 123, 983–993 (2016).

    CAS  PubMed  Google Scholar 

  • Salminen, S., Gibson, G. R., McCartney, A. L. & Isolauri, E. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 53, 1388–1389 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein, C. N. et al. Cesarean section delivery is not a risk factor for development of inflammatory bowel disease: a population-based analysis. Clin. Gastroenterol. Hepatol. 14, 50–57 (2016).

    PubMed  Google Scholar 

  • Madsen, K. L., Fedorak, R. N., Tavernini, M. M. & Doyle, J. S. Normal breast milk limits the development of colitis in IL-10-deficient mice. Inflamm. Bowel Dis. 8, 390–398 (2002).

    PubMed  Google Scholar 

  • Acheson, E. D. & Truelove, S. C. Early weaning in the aetiology of ulcerative colitis. A study of feeding in infancy in cases and controls. Br. Med. J. 2, 929–933 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klement, E., Cohen, R. V., Boxman, J., Joseph, A. & Reif, S. Breastfeeding and risk of inflammatory bowel disease: a systematic review with meta-analysis. Am. J. Clin. Nutr. 80, 1342–1352 (2004).

    CAS  PubMed  Google Scholar 

  • Barclay, A. R. et al. Systematic review: the role of breastfeeding in the development of pediatric inflammatory bowel disease. J. Pediatr. 155, 421–426 (2009).

    PubMed  Google Scholar 

  • Guo, A. Y. et al. Early life environment and natural history of inflammatory bowel diseases. BMC Gastroenterol. 14, 216 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Benchimol, E. I. et al. Rural and urban residence during early life is associated with a lower risk of inflammatory bowel disease: a population-based inception and birth cohort study. Am. J. Gastroenterol. 112, 1412–1422 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Juillerat, P. et al. Prevalence of inflammatory bowel disease in the Canton of Vaud (Switzerland): a population-based cohort study. J. Crohns Colitis 2, 131–141 (2008).

    PubMed  Google Scholar 

  • Ng, S. C. et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn's and colitis epidemiology study. Gastroenterology 145, 158–165.e2 (2013).

    PubMed  Google Scholar 

  • Kish, L. et al. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS ONE 8, e62220 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan, G. G. et al. The inflammatory bowel diseases and ambient air pollution: a novel association. Am. J. Gastroenterol. 105, 2412–2419 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Opstelten, J. L. et al. Exposure to ambient air pollution and the risk of inflammatory bowel disease: a European nested case-control study. Dig. Dis. Sci. 61, 2963–2971 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ananthakrishnan, A. N., McGinley, E. L., Binion, D. G. & Saeian, K. Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: an ecologic analysis. Inflamm. Bowel Dis. 17, 1138–1145 (2011).

    PubMed  Google Scholar 

  • Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  PubMed  Google Scholar 

  • Lewis, J. D. & Abreu, M. T. Diet as a trigger or therapy for inflammatory bowel diseases. Gastroenterology 152, 398–414.e6 (2017).

    CAS  PubMed  Google Scholar 

  • Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest. 123, 700–711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, K., DeCoffe, D., Molcan, E. & Gibson, D. L. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4, 1095–1119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amre, D. K. et al. Imbalances in dietary consumption of fatty acids, vegetables, and fruits are associated with risk for Crohn's disease in children. Am. J. Gastroenterol. 102, 2016–2025 (2007).

    CAS  PubMed  Google Scholar 

  • Ananthakrishnan, A. N. et al. A prospective study of long-term intake of dietary fiber and risk of Crohn's disease and ulcerative colitis. Gastroenterology 145, 970–977 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ananthakrishnan, A. N. et al. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn's disease. Gut 63, 776–784 (2014).

    CAS  PubMed  Google Scholar 

  • Chan, S. S. et al. Association between high dietary intake of the n-3 polyunsaturated fatty acid docosahexaenoic acid and reduced risk of Crohn's disease. Aliment. Pharmacol. Ther. 39, 834–842 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Silva, P. S. et al. An association between dietary arachidonic acid, measured in adipose tissue, and ulcerative colitis. Gastroenterology 139, 1912–1917 (2010).

    CAS  PubMed  Google Scholar 

  • Chapkin, R. S. et al. Immunomodulatory effects of (n-3) fatty acids: putative link to inflammation and colon cancer. J. Nutr. 137, S200–S204 (2007).

    Google Scholar 

  • Chan, S. S. et al. Carbohydrate intake in the etiology of Crohn's disease and ulcerative colitis. Inflamm. Bowel Dis. 20, 2013–2021 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Jantchou, P., Morois, S., Clavel-Chapelon, F., Boutron-Ruault, M. C. & Carbonnel, F. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am. J. Gastroenterol. 105, 2195–2201 (2010).

    CAS  PubMed  Google Scholar 

  • Ananthakrishnan, A. N. et al. High school diet and risk of Crohn's disease and ulcerative colitis. Inflamm. Bowel Dis. 21, 2311–2319 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Sturniolo, G. C., Di Leo, V., Ferronato, A., D'Odorico, A. & D'Inca, R. Zinc supplementation tightens “leaky gut” in Crohn's disease. Inflamm. Bowel Dis. 7, 94–98 (2001).

    CAS  PubMed  Google Scholar 

  • Ananthakrishnan, A. N. et al. Zinc intake and risk of Crohn's disease and ulcerative colitis: a prospective cohort study. Int. J. Epidemiol. 44, 1995–2005 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Siva, S., Rubin, D. T., Gulotta, G., Wroblewski, K. & Pekow, J. Zinc deficiency is associated with poor clinical outcomes in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 23, 152–157 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Ananthakrishnan, A. N. et al. Higher predicted vitamin D status is associated with reduced risk of Crohn's disease. Gastroenterology 142, 482–489 (2012).

    CAS  PubMed  Google Scholar 

  • Ananthakrishnan, A. N. et al. Normalization of plasma 25-hydroxy vitamin D is associated with reduced risk of surgery in Crohn's disease. Inflamm. Bowel Dis. 19, 1921–1927 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M. & Gewirtz, A. T. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66, 1414–1427 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ananthakrishnan, A. N. et al. Aspirin, nonsteroidal anti-inflammatory drug use, and risk for Crohn disease and ulcerative colitis: a cohort study. Ann. Intern. Med. 156, 350–359 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Berg, D. J. et al. Rapid development of colitis in NSAID-treated IL-10-deficient mice. Gastroenterology 123, 1527–1542 (2002).

    CAS  PubMed  Google Scholar 

  • Mahmud, T., Rafi, S. S., Scott, D. L., Wrigglesworth, J. M. & Bjarnason, I. Nonsteroidal antiinflammatory drugs and uncoupling of mitochondrial oxidative phosphorylation. Arthritis Rheum. 39, 1998–2003 (1996).

    CAS  PubMed  Google Scholar 

  • Krause, M. M. et al. Nonsteroidal antiinflammatory drugs and a selective cyclooxygenase 2 inhibitor uncouple mitochondria in intact cells. Arthritis Rheum. 48, 1438–1444 (2003).

    CAS  PubMed  Google Scholar 

  • Long, M. D. et al. Role of nonsteroidal anti-inflammatory drugs in exacerbations of inflammatory bowel disease. J. Clin. Gastroenterol. 50, 152–156 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi, K. et al. Prevalence and mechanism of nonsteroidal anti-inflammatory drug-induced clinical relapse in patients with inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 4, 196–202 (2006).

    CAS  PubMed  Google Scholar 

  • Bonner, G. F., Fakhri, A. & Vennamaneni, S. R. A long-term cohort study of nonsteroidal anti-inflammatory drug use and disease activity in outpatients with inflammatory bowel disease. Inflamm. Bowel Dis. 10, 751–757 (2004).

    PubMed  Google Scholar 

  • Sandborn, W. J. et al. Safety of celecoxib in patients with ulcerative colitis in remission: a randomized, placebo-controlled, pilot study. Clin. Gastroenterol. Hepatol. 4, 203–211 (2006).

    CAS  PubMed  Google Scholar 

  • Eckle, T. et al. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111, 2024–2035 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eltzschig, H. K. et al. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J. Exp. Med. 202, 1493–1505 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eltzschig, H. K. & Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberger, P. et al. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat. Immunol. 10, 195–202 (2009).

    CAS  PubMed  Google Scholar 

  • Thompson, L. F. et al. Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med. 200, 1395–1405 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eltzschig, H. K. et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med. 198, 783–796 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann, G. et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine 12, 246–252 (2000).

    CAS  PubMed  Google Scholar 

  • Giatromanolaki, A. et al. Hypoxia inducible factor 1α and 2α overexpression in inflammatory bowel disease. J. Clin. Pathol. 56, 209–213 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeulen, N. et al. Seroreactivity against glycolytic enzymes in inflammatory bowel disease. Inflamm. Bowel Dis. 17, 557–564 (2011).

    PubMed  Google Scholar 

  • Fruehauf, H. et al. Unsedated transnasal esophago-gastroduodenoscopy at 4559 M (14957 Ft) — endoscopic findings in healthy mountaineers after rapid ascent to high altitude. Gastroenterology 138, S483 (2010).

    Google Scholar 

  • Vavricka, S. R. et al. High altitude journeys and flights are associated with an increased risk of flares in inflammatory bowel disease patients. J. Crohns Colitis 8, 191–199 (2014).

    PubMed  Google Scholar 

  • Dulai, P. S. et al. Systematic review: the safety and efficacy of hyperbaric oxygen therapy for inflammatory bowel disease. Aliment. Pharmacol. Ther. 39, 1266–1275 (2014).

    CAS  PubMed  Google Scholar 

  • Dulai, P. S. et al. Hyperbaric oxygen therapy is safe and effective for hospitalized ulcerative colitis patients suffering from moderate-severe flares: a multi-center, randomized, double-blind, sham-controlled trial. Gastroenterology 152, S198 (2017).

    Google Scholar 

  • Shen, R. et al. Integrative subtype discovery in glioblastoma using iCluster. PLoS ONE 7, e35236 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W. et al. iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data. Bioinformatics 29, 149–159 (2013).

    PubMed  Google Scholar 

  • Weiser, M. et al. Molecular classification of Crohn's disease reveals two clinically relevant subtypes. Gut http://dx.doi.org/10.1136/gutjnl-2016-312518 (2016).

  • Polytarchou, C. et al. MicroRNA214 Is associated with progression of ulcerative colitis, and inhibition reduces development of colitis and colitis-associated cancer in mice. Gastroenterology 149, 981–992.e11 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, L. Z. et al. Expression of interleukin-22/STAT3 signaling pathway in ulcerative colitis and related carcinogenesis. World J. Gastroenterol. 19, 2638–2649 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koukos, G. et al. MicroRNA-124 regulates STAT3 expression and is down-regulated in colon tissues of pediatric patients with ulcerative colitis. Gastroenterology 145, 842–852.e2 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, X. et al. Maternal obesity induces sustained inflammation in both fetal and offspring large intestine of sheep. Inflamm. Bowel Dis. 17, 1513–1522 (2011).

    PubMed  Google Scholar 

  • Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  • D'Haens, G. R. et al. Therapy of metronidazole with azathioprine to prevent postoperative recurrence of Crohn's disease: a controlled randomized trial. Gastroenterology 135, 1123–1129 (2008).

    CAS  PubMed  Google Scholar 

  • Prantera, C. et al. Rifaximin-extended intestinal release induces remission in patients with moderately active Crohn's disease. Gastroenterology 142, 473–481.e4 (2012).

    CAS  PubMed  Google Scholar 

  • Shen, J., Zuo, Z. X. & Mao, A. P. Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohn's disease, and pouchitis: meta-analysis of randomized controlled trials. Inflamm. Bowel Dis. 20, 21–35 (2014).

    PubMed  Google Scholar 

  • Sood, A. et al. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin. Gastroenterol. Hepatol. 7, 1202–1209.e1 (2009).

    PubMed  Google Scholar 

  • Preidis, G. A. & Versalovic, J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 136, 2015–2031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aroniadis, O. C. & Brandt, L. J. Intestinal microbiota and the efficacy of fecal microbiota transplantation in gastrointestinal disease. Gastroenterol. Hepatol. (N. Y.) 10, 230–237 (2014).

    Google Scholar 

  • Costello, S. P. et al. Systematic review with meta-analysis: faecal microbiota transplantation for the induction of remission for active ulcerative colitis. Aliment. Pharmacol. Ther. 46, 213–224 (2017).

    CAS  PubMed  Google Scholar 

  • Moayyedi, P. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102–109.e6 (2015).

    PubMed  Google Scholar 

  • Rossen, N. G. et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149, 110–118.e4 (2015).

    PubMed  Google Scholar 

  • Paramsothy, S. et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389, 1218–1228 (2017).

    PubMed  Google Scholar 

  • Kugathasan, S. et al. Mucosal T-cell immunoregulation varies in early and late inflammatory bowel disease. Gut 56, 1696–1705 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gearry, R. B. IBD and environment: are there differences between east and west. Dig. Dis. 34, 84–89 (2016).

    PubMed  Google Scholar 

  • Sarajilic, A., Malod-Dognin, N., Yaveroglu, O. N. & Przulj, N. Graphlet-based characterized of directed networks. Sci. Rep. 6, 35098 (2016).

    Google Scholar