nature.com

Supernatural T cells: genetic modification of T cells for cancer therapy - Nature Reviews Immunology

  • ️Darcy, Phillip K.
  • ️Fri Nov 18 2005
  • Smyth, M. J., Godfrey, D. I. & Trapani, J. A. A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunol. 2, 293–299 (2001).

    Article  CAS  Google Scholar 

  • Rosenberg, S. A., Fox, E. & Churchill, W. H. Spontaneous regression of hepatic metastases from gastric carcinoma. Cancer 29, 472–474 (1972).

    Article  CAS  PubMed  Google Scholar 

  • Cole, W. H. Relationship of causative factors in spontaneous regression of cancer to immunologic factors possibly effective in cancer. J. Surg. Oncol. 8, 391–411 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S. A. Progress in human tumour immunology and immunotherapy. Nature 411, 380–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Interferon α versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials: Chronic Myeloid Leukemia Trialists' Collaborative Group. J. Natl Cancer Inst. 89, 1616–1620 (1997).

  • Grillo-Lopez, A. J., Hedrick, E., Rashford, M. & Benyunes, M. Rituximab: ongoing and future clinical development. Semin. Oncol. 29, 105–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Heslop, H. E. et al. Long-term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nature Med. 2, 551–555 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Walter, E. A. et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 333, 1038–1044 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nature Med. 10, 909–915 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S. A. et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Med. 4, 321–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Khong, H. T. & Restifo, N. P. Natural selection of tumor variants in the generation of 'tumor escape' phenotypes. Nature Immunol. 3, 999–1005 (2002).

    Article  CAS  Google Scholar 

  • Dunn, G. P., Old, L. J. & Schreiber, R. D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y. et al. Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines. J. Immunol. 174, 4415–4423 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kessels, H. W., Wolkers, M. C., van den Boom, M. D., van der Valk, M. A. & Schumacher, T. N. Immunotherapy through TCR gene transfer. Nature Immunol. 2, 957–961 (2001).

    Article  CAS  Google Scholar 

  • Stanislawski, T. et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nature Immunol. 2, 962–970 (2001).

    Article  CAS  Google Scholar 

  • Kuball, J. et al. Cooperation of human tumor-reactive CD4+ and CD8+ T cells after redirection of their specificity by a high-affinity p53A2.1-specific TCR. Immunity 22, 117–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Willemsen, R. A. et al. Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Ther. 7, 1369–1377 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin–T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989). This is the original report describing the concept of redirecting T-cell function by genetic modification with chimeric receptors composed of antibody determinants linked to T-cell signalling components. In this study, a mouse T-cell hybridoma line was engineered to react with the hapten trinitrophenol conjugated to tumour cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwu, P. et al. Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor γ chain. J. Exp. Med. 178, 361–366 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Altenschmidt, U., Klundt, E. & Groner, B. Adoptive transfer of in vitro-targeted, activated T lymphocytes results in total tumor regression. J. Immunol. 159, 5509–5515 (1997).

    CAS  PubMed  Google Scholar 

  • Hwu, P. et al. In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res. 55, 3369–3373 (1995). This study shows the potential of genetically redirected T cells to influence tumour growth in mice. A gene that encoded a chimeric antibody–Fcγ receptor enabled adoptively transferred mouse T cells to inhibit early intraperitoneal or lung metastases.

    CAS  PubMed  Google Scholar 

  • Pinthus, J. H. et al. Adoptive immunotherapy of prostate cancer bone lesions using redirected effector lymphocytes. J. Clin. Invest. 114, 1774–1781 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brentjens, R. J. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nature Med. 9, 279–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Mezzanzanica, D. et al. Transfer of chimeric receptor gene made of variable regions of tumor-specific antibody confers anticarbohydrate specificity on T cells. Cancer Gene Ther. 5, 401–407 (1998).

    CAS  PubMed  Google Scholar 

  • Rossig, C., Bollard, C. M., Nuchtern, J. G., Rooney, C. M. & Brenner, M. K. Epstein–Barr virus-specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood 99, 2009–2016 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Krause, A. et al. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med. 188, 619–626 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen, P. S. et al. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. Proc. Natl Acad. Sci. USA 93, 1820–1824 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hombach, A. et al. A chimeric receptor that selectively targets membrane-bound carcinoembryonic antigen (mCEA) in the presence of soluble CEA. Gene Ther. 6, 300–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Patel, S. D. et al. T-cell killing of heterogenous tumor or viral targets with bispecific chimeric immune receptors. Cancer Gene Ther. 7, 1127–1134 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Yee, C. et al. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo. J. Exp. Med. 192, 1637–1644 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overwijk, W. W. et al. Vaccination with a recombinant vaccinia virus encoding a 'self' antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4+ T lymphocytes. Proc. Natl Acad. Sci. USA 96, 2982–2987 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 100, 8372–8377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers, C. H. et al. Adoptive immuno-gene therapy of cancer with single chain antibody [scFv(Ig)] gene modified T lymphocytes. J. Biol. Regul. Homeost. Agents 18, 134–140 (2004).

    CAS  PubMed  Google Scholar 

  • Chen, W. et al. Reversal in the immunodominance hierarchy in secondary CD8+ T cell responses to influenza A virus: roles for cross-presentation and lysis-independent immunodomination. J. Immunol. 173, 5021–5027 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lee, P. P. et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med. 5, 677–685 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Haynes, N. M. et al. Redirecting mouse CTL against colon carcinoma: superior signaling efficacy of single-chain variable domain chimeras containing TCR-ζ vs FcεRI-γ. J. Immunol. 166, 182–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Hombach, A. et al. Tumor-specific T cell activation by recombinant immunoreceptors: CD3ζ signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3ζ signaling receptor molecule. J. Immunol. 167, 6123–6131 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Maher, J., Brentjens, R. J., Gunset, G., Riviere, I. & Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nature Biotechnol. 20, 70–75 (2002).

    Article  CAS  Google Scholar 

  • Haynes, N. M. et al. Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood 100, 3155–3163 (2002). An important advance in the effectiveness of genetically redirected T cells is described, in which incorporation of a co-stimulatory domain into the cytoplasmic portion of a chimeric gene results in increased antitumour effects and even in the eradication of early subcutaneous tumours or lung metastases in mice.

    Article  CAS  PubMed  Google Scholar 

  • Finney, H. M., Lawson, A. D., Bebbington, C. R. & Weir, A. N. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J. Immunol. 161, 2791–2797 (1998).

    CAS  PubMed  Google Scholar 

  • Finney, H. M., Akbar, A. N. & Lawson, A. D. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRζ chain. J. Immunol. 172, 104–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Imai, C. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Geiger, T. L., Nguyen, P., Leitenberg, D. & Flavell, R. A. Integrated src kinase and costimulatory activity enhances signal transduction through single-chain chimeric receptors in T lymphocytes. Blood 98, 2364–2371 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Fitzer-Attas, C. J., Schindler, D. G., Waks, T. & Eshhar, Z. Harnessing Syk family tyrosine kinases as signaling domains for chimeric single chain of the variable domain receptors: optimal design for T cell activation. J. Immunol. 160, 145–154 (1998).

    CAS  PubMed  Google Scholar 

  • Bertram, E. M., Dawicki, W. & Watts, T. H. Role of T cell costimulation in anti-viral immunity. Semin. Immunol. 16, 185–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Vinay, D. S. & Kwon, B. S. Differential expression and costimulatory effect of 4-1BB (CD137) and CD28 molecules on cytokine-induced murine CD8+ TC1 and TC2 cells. Cell. Immunol. 192, 63–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different Notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Moretta, A. et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 19, 197–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Ossendorp, F., Mengede, E., Camps, M., Filius, R. & Melief, C. J. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med. 187, 693–702 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattes, J. et al. Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J. Exp. Med. 197, 387–393 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hombach, A. et al. An entirely humanized CD3 ζ-chain signaling receptor that directs peripheral blood T cells to specific lysis of carcinoembryonic antigen-positive tumor cells. Int. J. Cancer 88, 115–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Daly, T. et al. Recognition of human colon cancer by T cells transduced with a chimeric receptor gene. Cancer Gene Ther. 7, 284–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Weijtens, M. E., Willemsen, R. A., Valerio, D., Stam, K. & Bolhuis, R. L. Single chain Ig/γ gene-redirected human T lymphocytes produce cytokines, specifically lyse tumor cells, and recycle lytic capacity. J. Immunol. 157, 836–843 (1996).

    CAS  PubMed  Google Scholar 

  • Rossig, C., Bollard, C. M., Nuchtern, J. G., Merchant, D. A. & Brenner, M. K. Targeting of GD2-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. Int. J. Cancer 94, 228–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  • McGuinness, R. P. et al. Anti-tumor activity of human T cells expressing the CC49-ζ chimeric immune receptor. Hum. Gene Ther. 10, 165–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Hwu, P. et al. Functional and molecular characterization of tumor-infiltrating lymphocytes transduced with tumor necrosis factor-α cDNA for the gene therapy of cancer in humans. J. Immunol. 150, 4104–4115 (1993).

    CAS  PubMed  Google Scholar 

  • Itoh, Y. et al. Characterization of tumor-necrosis-factor-gene-transduced tumor-infiltrating lymphocytes from ascitic fluid of cancer patients: analysis of cytolytic activity, growth rate, adhesion molecule expression and cytokine production. Cancer Immunol. Immunother. 40, 95–102 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Crittenden, M. et al. Pharmacologically regulated production of targeted retrovirus from T cells for systemic antitumor gene therapy. Cancer Res. 63, 3173–3180 (2003).

    CAS  PubMed  Google Scholar 

  • Butz, E. A. & Bevan, M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heemskerk, M. H. et al. Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J. Exp. Med. 199, 885–894 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kershaw, M. H., Westwood, J. A. & Hwu, P. Dual-specific T cells combine proliferation and antitumor activity. Nature Biotechnol. 20, 1221–1227 (2002). The authors of this report propose a new concept that involves dual-specific T cells to circumvent the poor immunogenicity of many TAAs. By combining tumour reactivity with specificity for a potent immunogen, in this case alloantigen, increased antitumour activity was observed in mice following adoptive transfer of dual-specific cells and allogeneic immunization.

    Article  CAS  Google Scholar 

  • Monsurro, V. et al. Kinetics of TCR use in response to repeated epitope-specific immunization. J. Immunol. 166, 5817–5825 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Qin, X. F., Baltimore, D. & Van Parijs, L. Generation of functional antigen-specific T cells in defined genetic backgrounds by retrovirus-mediated expression of TCR cDNAs in hematopoietic precursor cells. Proc. Natl Acad. Sci. USA 99, 6204–6209 (2002). This study shows the feasibility of providing a constant renewable source of T cells that are specific for ovalbumin by genetically modifying haemotopoietic stem cells. The introduction of tumour-specific TCRs into progenitor cells in this way could provide T cells that can affect existing malignant disease, as well as monitor the body for relapse in the long-term.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, L. J. et al. Enhanced antilymphoma efficacy of CD19-redirected influenza MP1-specific CTLs by cotransfer of T cells modified to present influenza MP1. Blood 105, 1622–1631 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. V., Latouche, J. B., Riviere, I. & Sadelain, M. The ABCs of artificial antigen presentation. Nature Biotechnol. 22, 403–410 (2004).

    Article  CAS  Google Scholar 

  • Liu, K. & Rosenberg, S. A. Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J. Immunol. 167, 6356–6365 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Cheng, L. E., Ohlen, C., Nelson, B. H. & Greenberg, P. D. Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. Proc. Natl Acad. Sci. USA 99, 3001–3006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topp, M. S. et al. Restoration of CD28 expression in CD28 CD8+ memory effector T cells reconstitutes antigen-induced IL-2 production. J. Exp. Med. 198, 947–955 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooijberg, E. et al. Immortalization of human CD8+ T cell clones by ectopic expression of telomerase reverse transcriptase. J. Immunol. 165, 4239–4245 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Lin, C. M. & Wang, F. H. Selective modification of antigen-specific CD4+ T cells by retroviral-mediated gene transfer and in vitro sensitization with dendritic cells. Clin. Immunol. 104, 58–66 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Charo, J. et al. Bcl-2 overexpression enhances tumor-specific T-cell survival. Cancer Res. 65, 2001–2008 (2005). Increased survival is imparted to tumour-specific T cells by a transgene encoding the anti-apoptotic molecule BCL-2. Such apoptosis-resistant T cells are shown to have increased antitumour capacity in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton, D., Gilham, D. E., O'Neill, A. & Hawkins, R. E. Retroviral transduction of human peripheral blood lymphocytes with Bcl-XL promotes in vitro lymphocyte survival in pro-apoptotic conditions. Gene Ther. 9, 527–535 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Dotti, G. et al. Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 105, 4677–4684 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., Li, F., Gordon, J. R. & Xiang, J. Synergistic enhancement of antitumor immunity with adoptively transferred tumor-specific CD4+ and CD8+ T cells and intratumoral lymphotactin transgene expression. Cancer Res. 62, 2043–2051 (2002).

    CAS  PubMed  Google Scholar 

  • Homey, B., Muller, A. & Zlotnik, A. Chemokines: agents for the immunotherapy of cancer? Nature Rev. Immunol. 2, 175–184 (2002).

    Article  CAS  Google Scholar 

  • Haghnegahdar, H. et al. The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma. J. Leukoc. Biol. 67, 53–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Chuntharapai, A., Lee, J., Hebert, C. A. & Kim, K. J. Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes. J. Immunol. 153, 5682–5688 (1994).

    CAS  PubMed  Google Scholar 

  • Kershaw, M. H. et al. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum. Gene Ther. 13, 1971–1980 (2002). This is the original description of the manipulation of the migration properties of T cells by insertion of a gene that encodes a receptor for the tumour-associated chemokine CXCL1. Although only carried out in vitro , this study raises the possibility of genetically redirecting T cells to penetrate tumours in greater numbers.

    Article  CAS  PubMed  Google Scholar 

  • Iellem, A. et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J. Exp. Med. 194, 847–853 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollard, C. M. et al. Adapting a transforming growth factor β-related tumor protection strategy to enhance antitumor immunity. Blood 99, 3179–3187 (2002). A novel method of enabling tumour- or virus-specific T cells to resist the tumour-derived inhibitory factor TGF-β is presented in this in vitro study. Many tumour types secrete TG-β, so this strategy might allow tumour-specific T cells to maintain their tumour-destructive properties in the face of an otherwise immunosuppressive environment.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, H. J. et al. A strategy for treatment of Epstein–Barr virus-positive Hodgkin's disease by targeting interleukin 12 to the tumor environment using tumor antigen-specific T cells. Cancer Gene Ther. 11, 81–91 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina, S. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256 (2003).

    Article  PubMed  Google Scholar 

  • Li, Z. et al. Murine leukemia induced by retroviral gene marking. Science 296, 497 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Bonini, C. et al. Safety of retroviral gene marking with a truncated NGF receptor. Nature Med. 9, 367–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Bonini, C. et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276, 1719–1724 (1997). This article deals with controlling the persistence and activity of tumour-reactive T cells (after they have been transferred to patients) by insertion of a suicide gene into the T cells. If the genetically modified T cells begin to damage normal tissue or become malignant themselves, a drug can be administered that eliminates genetically modified T cells without harming normal T cells.

    Article  CAS  PubMed  Google Scholar 

  • Straathof, K. C. et al. An inducible caspase 9 safety switch for T-cell therapy. Blood 105, 4247–4254 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomis, D. C. et al. A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97, 1249–1257 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Rettinger, S. D. et al. Liver-directed gene therapy: quantitative evaluation of promoter elements by using in vivo retroviral transduction. Proc. Natl Acad. Sci. USA 91, 1460–1464 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Speiser, D. E. et al. Self antigens expressed by solid tumors do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J. Exp. Med. 186, 645–653 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura, T. & Sakaguchi, S. Naturally arising CD25+CD4+ regulatory T cells in tumor immunity. Curr. Top. Microbiol. Immunol. 293, 287–302 (2005).

    CAS  PubMed  Google Scholar 

  • Gorelik, L. & Flavell, R. A. Transforming growth factor-β in T-cell biology. Nature Rev. Immunol. 2, 46–53 (2002).

    Article  CAS  Google Scholar 

  • Salazar-Onfray, F. Interleukin-10: a cytokine used by tumors to escape immunosurveillance. Med. Oncol. 16, 86–94 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Cebon, J. et al. Two Phase I studies of low dose recombinant human IL-12 with Melan-A and influenza peptides in subjects with advanced malignant melanoma. Cancer Immun. 3, 7–25 (2003).

    PubMed  Google Scholar 

  • Sadanaga, N. et al. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin. Cancer Res. 7, 2277–2284 (2001).

    CAS  PubMed  Google Scholar 

  • Lonchay, C. et al. Correlation between tumor regression and T cell responses in melanoma patients vaccinated with a MAGE antigen. Proc. Natl Acad. Sci. USA 101 (Suppl. 2), 14631–14638 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson, A. C., Harlin, H. & Gajewski, T. F. Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma. J. Clin. Oncol. 21, 2342–2348 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Lau, R. et al. Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J. Immunother. 24, 66–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Murphy, G. P. et al. Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: a Phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate 38, 73–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Morse, M. A. et al. A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin. Cancer Res. 5, 1331–1338 (1999).

    CAS  PubMed  Google Scholar 

  • Kono, K. et al. Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer. Clin. Cancer Res. 8, 3394–3400 (2002).

    CAS  PubMed  Google Scholar 

  • Scheibenbogen, C. et al. Phase 2 trial of vaccination with tyrosinase peptides and granulocyte–macrophage colony-stimulating factor in patients with metastatic melanoma. J. Immunother. 23, 275–281 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Slingluff, C. L. Jr et al. Clinical and immunologic results of a randomized Phase II trial of vaccination using four melanoma peptides either administered in granulocyte–macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J. Clin. Oncol. 21, 4016–4026 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Sato, Y. et al. A Phase I trial of cytotoxic T-lymphocyte precursor-oriented peptide vaccines for colorectal carcinoma patients. Br. J. Cancer 90, 1334–1342 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulley, J. L. et al. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin. Cancer Res. 11, 3353–3362 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Vonderheide, R. H. et al. Vaccination of cancer patients against telomerase induces functional antitumor CD8+ T lymphocytes. Clin. Cancer Res. 10, 828–839 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Knutson, K. L., Schiffman, K., Cheever, M. A. & Disis, M. L. Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369–377, results in short-lived peptide-specific immunity. Clin. Cancer Res. 8, 1014–1018 (2002).

    CAS  PubMed  Google Scholar 

  • Jager, E. et al. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc. Natl Acad. Sci. USA 97, 12198–12203 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khleif, S. N. et al. A Phase I vaccine trial with peptides reflecting ras oncogene mutations of solid tumors. J. Immunother. 22, 155–165 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Gulley, J. et al. Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate 53, 109–117 (2002).

    Article  CAS  PubMed  Google Scholar 

  • von Mehren, M. et al. Pilot study of a dual gene recombinant avipox vaccine containing both carcinoembryonic antigen (CEA) and B7.1 transgenes in patients with recurrent CEA-expressing adenocarcinomas. Clin. Cancer Res. 6, 2219–2228 (2000).

    CAS  PubMed  Google Scholar 

  • Zhu, M. Z., Marshall, J., Cole, D., Schlom, J. & Tsang, K. Y. Specific cytolytic T-cell responses to human CEA from patients immunized with recombinant avipox–CEA vaccine. Clin. Cancer Res. 6, 24–33 (2000).

    CAS  PubMed  Google Scholar 

  • Lienard, D. et al. Ex vivo detectable activation of Melan-A-specific T cells correlating with inflammatory skin reactions in melanoma patients vaccinated with peptides in IFA. Cancer Immun. 4, 4–23 (2004).

    PubMed  Google Scholar 

  • Svane, I. M. et al. Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a Phase I study. Cancer Immunol. Immunother. 53, 633–641 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hersey, P. et al. Phase I/II study of treatment with dendritic cell vaccines in patients with disseminated melanoma. Cancer Immunol. Immunother. 53, 125–134 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Cathcart, K. et al. A multivalent bcr–abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 103, 1037–1042 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Haynes, N. M. et al. Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 costimulation. J. Immunol. 169, 5780–5786 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Teng, M. W., Kershaw, M. H., Moeller, M., Smyth, M. J. & Darcy, P. K. Immunotherapy of cancer using systemically delivered gene-modified human T lymphocytes. Hum. Gene Ther. 15, 699–708 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Kershaw, M. H. et al. Generation of gene-modified T cells reactive against the angiogenic kinase insert domain-containing receptor (KDR) found on tumor vasculature. Hum. Gene Ther. 11, 2445–2452 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ren-Heidenreich, L., Hayman, G. T. & Trevor, K. T. Specific targeting of EGP-2+ tumor cells by primary lymphocytes modified with chimeric T cell receptors. Hum. Gene Ther. 11, 9–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Yun, C. O., Nolan, K. F., Beecham, E. J., Reisfeld, R. A. & Junghans, R. P. Targeting of T lymphocytes to melanoma cells through chimeric anti-GD3 immunoglobulin T-cell receptors. Neoplasia 2, 449–459 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers, C. H., Willemsen, R. A., Luider, B. A., Debets, R. & Bolhuis, R. L. Protocol for gene transduction and expansion of human T lymphocytes for clinical immunogene therapy of cancer. Cancer Gene Ther. 9, 613–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Cooper, L. J. et al. Enhanced anti-lymphoma efficacy of CD19 redirected influenza MP1-specific CTL's by co-transfer of T-cells modified to present influenza MP1. Blood 105, 1622–1631 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Dotti, G. et al. Human cytotoxic T-lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 105, 4677–4684 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straathof, K. C. et al. An inducible caspase 9 safety switch for T-cell therapy. Blood 105, 4247–4254 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar