nature.com

The immune response in atherosclerosis: a double-edged sword - Nature Reviews Immunology

  • ️Libby, Peter
  • ️Fri Jun 16 2006
  • Murray, C. J. & Lopez, A. D. Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet 349, 1436–1442 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Jonasson, L., Holm, J., Skalli, O., Bondjers, G. & Hansson, G. K. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6, 131–138 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Bobryshev, Y. V. & Lord, R. S. A. S-100 positive cells in human arterial intima and in atherosclerotic lesions. Cardiovas. Res. 29, 689–696 (1995).

    Article  CAS  Google Scholar 

  • Kovanen, P. T., Kaartinen, M. & Paavonen, T. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92, 1084–1088 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Jonasson, L., Holm, J., Skalli, O., Gabbiani, G. & Hansson, G. K. Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J. Clin. Invest. 76, 125–131 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plump, A. S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Piedrahita, J. A., Zhang, S. H., Hagaman, J. R., Oliver, P. M. & Maeda, N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc. Natl Acad. Sci. USA 89, 4471–4475 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi, S., Goldstein, J. L., Brown, M. S., Herz, J. & Burns, D. K. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J. Clin. Invest. 93, 1885–1893 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cybulsky, M. I. & Gimbrone, M. A. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherosclerosis. Science 251, 788–791 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Nakashima, Y., Raines, E. W., Plump, A. S., Breslow, J. L. & Ross, R. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the apoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 18, 842–851 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Dai, G. et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and-resistant regions of human vasculature. Proc. Natl Acad. Sci. USA 101, 14871–14876 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajavashisth, T. B. et al. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 344, 254–257 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Smith, J. D. et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl Acad. Sci. USA 92, 8264–8268 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Cybulsky, M. I., Gimbrone, M. A. & Libby, P. Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am. J. Pathol. 143, 1551–1559 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, Z. M. et al. The combined role of P- and E-selectins in atherosclerosis. J. Clin. Invest. 102, 145–152 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cybulsky, M. I. et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107, 1255–1262 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Gu, L. et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2, 275–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Mach, F. et al. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J. Clin. Invest. 104, 1041–1050 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haley, K. J. et al. Overexpression of eotaxin and the CCR3 receptor in human atherosclerosis: using genomic technology to identify a potential novel pathway of vascular inflammation. Circulation 102, 2185–2189 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Minami, M. et al. Expression of SR-PSOX, a novel cell-surface scavenger receptor for phosphatidylserine and oxidized LDL in human atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 21, 1796–1800 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Veillard, N. R. et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ. Res. 94, 253–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Combadiere, C. et al. Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107, 1009–1016 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Lesnik, P., Haskell, C. A. & Charo, I. F. Decreased atherosclerosis in CX3CR1−/− mice reveals a role for fractalkine in atherogenesis. J. Clin. Invest. 111, 333–340 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg, D. Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem. 272, 20963–20966 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Peiser, L., Mukhopadhyay, S. & Gordon, S. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 14, 123–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti, A. et al. The macrophage scavenger receptor type A directs modified proteins to antigen presentation. Eur. J. Immunol. 29, 512–521 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Moore, K. J. et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J. Clin. Invest. 115, 2192–2201 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodzioch, M. et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nature Genet. 22, 347–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Edfeldt, K., Swedenborg, J., Hansson, G. K. & Yan, Z. Q. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105, 1158–1161 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kol, A., Lichtman, A. H., Finberg, R. W., Libby, P. & Kurt-Jones, E. A. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J. Immunol. 164, 13–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Xu, X. H. et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104, 3103–3108 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Miller, Y. I. et al. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem. 278, 1561–1568 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA 101, 10679–10684 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjorkbacka, H. et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nature Med. 10, 416–421 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Paulsson, G., Zhou, X., Tö rnquist, E. & Hansson, G. K. Oligoclonal T cell expansions in atherosclerotic lesions of apoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 20, 10–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Stemme, S., Holm, J. & Hansson, G. K. T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. Arterioscler. Thromb. 12, 206–211 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Angeli, V. et al. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 21, 561–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. et al. Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nature Genet. 37, 365–372 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Swanberg, M. et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nature Genet. 37, 486–494 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci. USA 92, 3893–3897 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer, O. J. et al. Unstable atherosclerotic plaques contain T-cells that respond to Chlamydia pneumoniae. Cardiovasc. Res. 48, 402–408 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Palinski, W. et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc. Natl Acad. Sci. USA 86, 1372–1376 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palinski, W. et al. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J. Clin. Invest. 98, 800–814 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chicz, R. M. et al. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J. Exp. Med. 178, 27–47 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X., Caligiuri, G., Hamsten, A., Lefvert, A. K. & Hansson, G. K. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 21, 108–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized LDL. Proc. Natl Acad. Sci. USA 92, 3893–3897 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105, 1731–17340 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder, C. J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nature Med. 9, 736–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X., Nicoletti, A., Elhage, R. & Hansson, G. K. Transfer of CD4+ T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 102, 2919–2922 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tupin, E. et al. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J. Exp. Med. 199, 417–422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melian, A., Geng, Y. J., Sukhova, G. K., Libby, P. & Porcelli, S. A. CD1 expression in human atherosclerosis. A potential mechanism for T cell activation by foam cells. Am. J. Pathol. 155, 775–786 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai, Y. et al. Natural killer T cells accelerate atherogenesis in mice. Blood 104, 2051–2059 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Uyemura, K. et al. Cross-regulatory roles of interleukin (IL)-12 and IL-10 in atherosclerosis. J. Clin. Invest. 97, 2130–2138 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frostegard, J. et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 145, 33–43. (1999).

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S. et al. IFN-γ potentiates atherosclerosis in ApoE knock-out mice. J. Clin. Invest. 99, 2752–2761 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buono, C. et al. Influence of interferon-γ on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 23, 454–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Davenport, P. & Tipping, P. G. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol. 163, 1117–1125 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elhage, R. et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc. Res. 59, 234–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Branen, L. et al. Inhibition of tumor necrosis factor-α reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 24, 2137–2142 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Buono, C. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc. Natl Acad. Sci. USA 102, 1596–1601 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitman, S. C., Ravisankar, P., Elam, H. & Daugherty, A. Exogenous interferon-γ enhances atherosclerosis in apolipoprotein E−/− mice. Am. J. Pathol. 157, 1819–1824 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurat, E. et al. In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 104, 197–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Paigen, B., Morrow, A., Brandon, C., Mitchell, D. & Holmes, P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57, 65–73 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Huber, S. A., Sakkinen, P., David, C., Newell, M. K. & Tracy, R. P. T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation 103, 2610–2616 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Mallat, Z. et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ. Res. 89, E41–E45 (2001).

    CAS  PubMed  Google Scholar 

  • Whitman, S. C., Ravisankar, P. & Daugherty, A. Interleukin-18 enhances atherosclerosis in apolipoprotein E−/− mice through release of interferon-γ. Circ. Res. 90, e34–e38 (2002).

    Article  CAS  PubMed  Google Scholar 

  • King, V. L., Szilvassy, S. J. & Daugherty, A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler. Thromb. Vasc. Biol. 22, 456–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, K., Shichiri, M., Libby, P., Lee, R. T. & Mitchell, R. N. Th2-predominant inflammation and blockade of IFN-γ signaling induce aneurysms in allografted aortas. J. Clin. Invest. 114, 300–308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friesel, R., Komoriya, A. & Maciag, T. Inhibition of endothelial cell proliferation by γ-interferon. J. Cell Biol. 104, 689–696 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Hansson, G. K., Hellstrand, M., Rymo, L., Rubbia, L. & Gabbiani, G. Interferon γ inhibits both proliferation and expression of differentiation-specific α-smooth muscle actin in arterial smooth muscle cells. J. Exp. Med. 170, 1595–1608 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Amento, E. P., Ehsani, N., Palmer, H. & Libby, P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler. Thromb. 11, 1223–1230 (1991).

    Article  CAS  PubMed  Google Scholar 

  • van Hinsbergh, V. W. M., van den Berg, E. A., Fiers, W. & Dooijewaard, G. Tumor necrosis factor induces the production of urokinase-type plasminogen activator by human endothelial cells. Blood 75, 1991–1998 (1990).

    CAS  PubMed  Google Scholar 

  • Lee, E. et al. Regulation of matrix metalloproteinases and plasminogen activator inhibitor-1 synthesis by plasminogen in cultured human vascular smooth muscle cells. Circ. Res. 78, 44–49 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Saren, P., Welgus, H. G. & Kovanen, P. T. TNF-α and IL-1β selectively induce expression of 92-kDa gelatinase by human macrophages. J. Immunol. 157, 4159–4165 (1996).

    CAS  PubMed  Google Scholar 

  • Jovinge, S. et al. Evidence for a role of tumor necrosis factor α in disturbances of triglyceride and glucose metabolism predisposing to coronary heart disease. Metabolism 47, 113–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Boquist, S. et al. Alimentary lipemia, postprandial triglyceride-rich lipoproteins, and common carotid intima-media thickness in healthy, middle-aged men. Circulation 100, 723–728 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Beutler, B. & Cerami, A. Cachectin and tumour necrosis factor as two sided of the same biological coin. Nature 320, 584–588 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Mach, F., Schoenbeck, U., Bonnefoy, J.-Y., Pober, J. & Libby, P. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40. Induction of collagenase, stromelysin, and tissue factor. Circulation 96, 396–399 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Mach, F. et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages- implications for CD40–CD40 ligand signaling in atherosclerosis. Proc. Natl Acad. Sci. USA 94, 1931–1936 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Mach, F., Schö nbeck, U., Sukhova, G. K., Atkinson, E. & Libby, P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394, 200–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Lutgens, E. et al. Requirement for CD154 in the progression of atherosclerosis. Nature Med. 5, 1313–1316 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Mallat, Z. et al. Protective role of interleukin-10 in atherosclerosis. Circ. Res. 85, e17–e24 (1999).

  • Pinderski Oslund, L. J. et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 19, 2847–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Caligiuri, G. et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol. Med. 9, 10–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grainger, D. J. et al. The serum concentration of active transforming growth factor-β is severely depressed in advanced atherosclerosis. Nature Med. 1, 74–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Mallat, Z. et al. Inhibition of transforming growth factor-β signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 89, 930–934 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Lutgens, E. et al. Transforming growth factor-β mediates balance between inflammation and fibrosis during plaque progression. Arterioscler. Thromb. Vasc. Biol. 22, 975–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Robertson, A. K. et al. Disruption of TGF-β signaling in T cells accelerates atherosclerosis. J. Clin. Invest. 112, 1342–1350 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gojova, A. et al. Specific abrogation of transforming growth factor-β signaling in T cells alters atherosclerotic lesion size and composition in mice. Blood 102, 4052–4058 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nature Med. 12, 178–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Salonen, J. T. et al. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 339, 883–887 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Fredrikson, G. N. et al. Identification of immune responses against aldehyde-modified peptide sequences in apoB associated with cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 23, 872–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Shaw, P. X. et al. Human-derived anti-oxidized LDL autoantibody blocks uptake of oxidized LDL by macrophages and localizes to atherosclerotic lesions in vivo. Arterioscler. Thromb. Vasc. Biol. 21, 1333–1339 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kol, A., Sukhova, G. K., Lichtman, A. H. & Libby, P. Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-α and matrix metalloproteinase expression. Circulation 98, 300–307 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Xu, Q. et al. Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis. Lancet 341, 255–259 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Perschinka, H. et al. Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23, 1060–1065 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Caligiuri, G., Nicoletti, A., Poirier, B. & Hansson, G. K. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest. 109, 745–753 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby, P. & Aikawa, M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nature Med. 8, 1257–1262 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Henney, A. M. et al. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc. Natl Acad. Sci. USA 88, 8154–8158 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galis, Z. S., Sukhova, G. K., Lark, M. W. & Libby, P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnarable regions of human atherosclerotic plaques. J. Clin. Invest. 94, 2493–2503 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dollery, C. & Libby, P. Atherosclerosis and proteinase activation. Cardiovasc. Res. 69, 625–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Buchner, K. et al. CD40 ligand is selectively expressed on CD4+ T cells and platelets: implications for CD40–CD40L signalling in atherosclerosis. J. Pathol. 201, 288–295 (2003).

    Article  PubMed  Google Scholar 

  • Poon, M., Badimon, J. J. & Fuster, V. Overcoming restenosis with sirolimus: from alphabet soup to clinical reality. Lancet 359, 619–622 (2002).

    Article  PubMed  Google Scholar 

  • Jonasson, L., Holm, J. & Hansson, G. K. Cyclosporin A inhibits smooth muscle proliferation in the vascular response to injury. Proc. Natl Acad. Sci. USA 85, 2303–2306 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344, 1383–1389 (1994).

  • Ridker, P. M. et al. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med. 352, 20–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Greenwood, J., Steinman, L. & Zamvil, S.S. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nature Rev. Immunol. 6, 358–370

  • Takemoto, M. & Liao, J. K. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler. Thromb. Vasc. Biol. 21, 1712–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kwak, B., Mulhaupt, F., Myit, S. & Mach, F. Statins as a newly recognized type of immunomodulator. Nature Med. 6, 1399–1402 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Mehra, M. R. & Raval, N. Y. Metaanalysis of statins and survival in de novo cardiac transplantation. Transplant. Proc. 36, 1539–1541 (2004).

    Article  CAS  PubMed  Google Scholar 

  • McCarey, D. W. et al. Trial of atorvastatin in rheumatoid arthritis (TARA): double-blind, randomised placebo-controlled trial. Lancet 363, 2015–2021 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Youssef, S. et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420, 78–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Marx, N. et al. PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ. Res. 90, 703–710 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staels, B. et al. Activation of human aortic smooth-muscle cells is inhibited by PPARα but not by PPARγ activators. Nature 393, 790–793 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald, G. A. Coxibs and cardiovascular disease. N. Engl. J. Med. 351, 1709–1711 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Solomon, S. D. et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med. 352, 1071–1080 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Liuzzo, G. et al. The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina. N. Engl. J. Med. 331, 417–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Ridker, P. M., Hennekens, C. H., Buring, J. E. & Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Danesh, J. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 350, 1387–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Palinski, W., Miller, E. & Witztum, J. L. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl Acad. Sci. USA 92, 821–825 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameli, S. et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol. 16, 1074–1079 (1996).

    Article  CAS  PubMed  Google Scholar 

  • George, J. et al. Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 138, 147–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Freigang, S., Hörkkö, S., Miller, E., Witztum, J. L. & Palinski, W. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler. Thromb. Vasc. Biol. 18, 1972–1982 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Fredrikson, G. N. et al. Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler. Thromb. Vasc. Biol. 23, 879–884 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X., Robertson, A. K., Hjerpe, C. & Hansson, G. K. Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26, 864–870 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Afek, A. et al. Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis. J. Autoimmun. 14, 115–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Harats, D., Yacov, N., Gilburd, B., Shoenfeld, Y. & George, J. Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J. Am. Coll. Cardiol. 40, 1333–1338 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Maron, R. et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106, 1708–1715 (2002).

    Article  CAS  PubMed  Google Scholar 

  • George, J. et al. Induction of early atherosclerosis in LDL-receptor-deficient mice immunized with β2-glycoprotein I. Circulation 98, 1108–1115 (1998).

    Article  CAS  PubMed  Google Scholar