nature.com

Immunobiology of the TAM receptors - Nature Reviews Immunology

  • ️Rothlin, Carla V.
  • ️Thu May 01 2008
  • Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    CAS  PubMed  Google Scholar 

  • Bublil, E. M. & Yarden, Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr. Opin. Cell Biol. 19, 124–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Pasquale, E. B. Eph receptor signalling casts a wide net on cell behaviour. Nature Rev. Mol. Cell Biol. 6, 462–475 (2005).

    Article  CAS  Google Scholar 

  • Lai, C. & Lemke, G. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 6, 691–704 (1991). This study first identified the TAM receptors as a distinct receptor PTK subfamily.

    Article  CAS  PubMed  Google Scholar 

  • O'Bryan, J. P. et al. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol. Cell. Biol. 11, 5016–5031 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapraz, F. et al. RTK and TGF-β signaling pathways genes in the sea urchin genome. Dev. Biol. 300, 132–152 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, T. et al. Structural basis for Gas6–Axl signalling. EMBO J. 25, 80–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Stitt, T. N. et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80, 661–670 (1995). This study reports the identification of two ligands for TAM receptors.

    Article  CAS  PubMed  Google Scholar 

  • Nagata, K. et al. Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J. Biol. Chem. 271, 30022–30027 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Prasad, D. et al. TAM receptor function in the retinal pigment epithelium. Mol. Cell. Neurosci. 33, 96–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Uehara, H. & Shacter, E. Auto-oxidation and oligomerization of protein S on the apoptotic cell surface is required for Mer tyrosine kinase-mediated phagocytosis of apoptotic cells. J. Immunol. 180, 2522–2530 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Rezende, S. M., Simmonds, R. E. & Lane, D. A. Coagulation, inflammation, and apoptosis: different roles for protein S and the protein S–C4b binding protein complex. Blood 103, 1192–1201 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Huang, M. et al. Structural basis of membrane binding by Gla domains of vitamin K-dependent proteins. Nature Struct. Biol. 10, 751–756 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Nakano, T. et al. Requirement of γ-carboxyglutamic acid residues for the biological activity of Gas6: contribution of endogenous Gas6 to the proliferation of vascular smooth muscle cells. Biochem. J. 323, 387–392 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanbasic, I., Rajotte, I. & Blostein, M. The role of γ-carboxylation in the anti-apoptotic function of Gas6. J. Thromb. Haemost. 3, 2790–2797 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Benzakour, O. & Kanthou, C. The anticoagulant factor, protein S, is produced by cultured human vascular smooth muscle cells and its expression is up-regulated by thrombin. Blood 95, 2008–2014 (2000).

    CAS  PubMed  Google Scholar 

  • Anderson, H. A. et al. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nature Immunol. 4, 87–91 (2003). This work identified the TAM ligand protein S as the factor responsible for serum-stimulated phagocytosis of apoptotic cells.

    Article  CAS  Google Scholar 

  • Sasaki, T. et al. Crystal structure of a C-terminal fragment of growth arrest-specific protein Gas6. Receptor tyrosine kinase activation by laminin G-like domains. J. Biol. Chem. 277, 44164–44170 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Q. et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398, 723–728 (1999). This study documented the progressive degeneration of germ cells in the TAM triple mutant mice.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Q. & Lemke, G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293, 306–311 (2001). This study demonstrated that TAM-deficient mice develop severe lymphoproliferation and systemic autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  • Caraux, A. et al. Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nature Immunol. 7, 747–754 (2006). This work showed that the TAM receptors are required for NK-cell differentiation and maturation.

    Article  CAS  Google Scholar 

  • Angelillo-Scherrer, A. et al. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nature Med. 7, 215–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Yanagita, M. et al. Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. J. Clin. Invest. 110, 239–246 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothlin, C. V., Ghosh, S., Zuniga, E. I., Oldstone, M. B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007). This study identified a new negative regulatory pathway driven by the TAM receptor family, and established its role as an inhibitor of both TLR- and cytokine-driven immune responses in APCs.

    Article  CAS  PubMed  Google Scholar 

  • Camenisch, T. D., Koller, B. H., Earp, H. S. & Matsushima, G. K. A novel receptor tyrosine kinase, Mer, inhibits TNF-α production and lipopolysaccharide-induced endotoxic shock. J. Immunol. 162, 3498–3503 (1999).

    CAS  PubMed  Google Scholar 

  • Tibrewal, N. et al. Autophosphorylation docking site Tyr-867 in Mer receptor tyrosine kinase allows for dissociation of multiple signaling pathways for phagocytosis of apoptotic cells and down-modulation of lipopolysaccharide-inducible NF-κB transcriptional activation. J. Biol. Chem. 283, 3618–3627 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Wormald, S. & Hilton, D. J. The negative regulatory roles of suppressor of cytokine signaling proteins in myeloid signaling pathways. Curr. Opin. Hematol. 14, 9–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura, A., Nishinakamura, H., Matsumura, Y. & Hanada, T. Negative regulation of cytokine signaling and immune responses by SOCS proteins. Arthritis Res. Ther. 7, 100–110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy, D. E. & Darnell, J. E. Jr. Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  Google Scholar 

  • Sharif, M. N. et al. Twist mediates suppression of inflammation by type I IFNs and Axl. J. Exp. Med. 203, 1891–1901 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H. et al. Immunoexpression of Tyro 3 family receptors — Tyro 3, Axl, and Mer — and their ligand Gas6 in postnatal developing mouse testis. J. Histochem. Cytochem. 53, 1355–1364 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi, Y. & Shiratsuchi, A. Phagocytic removal of apoptotic spermatogenic cells by Sertoli cells: mechanisms and consequences. Biol. Pharm. Bull. 27, 13–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa, A., Shiratsuchi, A., Tsuda, K. & Nakanishi, Y. In vivo analysis of phagocytosis of apoptotic cells by testicular Sertoli cells. Mol. Reprod. Dev. 71, 166–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ueno, H. & Mori, H. Morphometrical analysis of Sertoli cell ultrastructure during the seminiferous epithelial cycle in rats. Biol. Reprod. 43, 769–776 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Young, R. W. & Bok, D. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J. Cell Biol. 42, 392–403 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D'Cruz, P. M. et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum. Mol. Genet. 9, 645–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Nandrot, E. et al. Homozygous deletion in the coding sequence of the c-mer gene in RCS rats unravels general mechanisms of physiological cell adhesion and apoptosis. Neurobiol. Dis. 7, 586–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Duncan, J. L. et al. An RCS-like retinal dystrophy phenotype in mer knockout mice. Invest. Ophthalmol. Vis. Sci. 44, 826–838 (2003).

    Article  PubMed  Google Scholar 

  • Gal, A. et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nature Genet. 26, 270–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tschernutter, M. et al. Clinical characterisation of a family with retinal dystrophy caused by mutation in the Mertk gene. Br. J. Ophthalmol. 90, 718–723 (2006). References 37 to 41 identified the essential role of MER in retinal homeostasis and phagocytosis in mice, rats and humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, R. S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211 (2001). This is the first study that demonstrated the importance of the TAM receptor MER in the clearance of apoptotic cells by macrophages.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, P. L. et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med. 196, 135–140 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seitz, H. M., Camenisch, T. D., Lemke, G., Earp, H. S. & Matsushima, G. K. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J. Immunol. 178, 5635–5642 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Mahoney, J. A. & Rosen, A. Apoptosis and autoimmunity. Curr. Opin. Immunol. 17, 583–588 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nature Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  Google Scholar 

  • Baccala, R., Hoebe, K., Kono, D. H., Beutler, B. & Theofilopoulos, A. N. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nature Med. 13, 543–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Baumann, I. et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum. 46, 191–201 (2002).

    Article  PubMed  Google Scholar 

  • Gaipl, U. S. et al. Clearance of apoptotic cells in human SLE. Curr. Dir. Autoimmun. 9, 173–187 (2006).

    CAS  PubMed  Google Scholar 

  • Stuart, L. M. et al. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. J. Immunol. 168, 1627–1635 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Sauter, B. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravichandran, K. S. “Recruitment signals” from apoptotic cells: invitation to a quiet meal. Cell 113, 817–820 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Ogden, C. A. et al. Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt's lymphoma. J. Immunol. 174, 3015–3023 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Lingnau, M., Hoflich, C., Volk, H. D., Sabat, R. & Docke, W. D. Interleukin-10 enhances the CD14-dependent phagocytosis of bacteria and apoptotic cells by human monocytes. Hum. Immunol. 68, 730–738 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Jung, M. et al. Expression profiling of IL-10-regulated genes in human monocytes and peripheral blood mononuclear cells from psoriatic patients during IL-10 therapy. Eur. J. Immunol. 34, 481–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Sen, P. et al. Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NF-κB activation in dendritic cells. Blood 109, 653–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallet, M. A. et al. MerTK is required for apoptotic cell-induced T cell tolerance. J. Exp. Med. 205, 219–232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., Tibrewal, N. & Birge, R. B. Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol. 16, 189–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Finnemann, S. C. & Nandrot, E. F. MerTK activation during RPE phagocytosis in vivo requires αVβ5 integrin. Adv. Exp. Med. Biol. 572, 499–503 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan, N. P. & Earp, H. S. An SH2 domain-dependent, phosphotyrosine-independent interaction between Vav1 and the Mer receptor tyrosine kinase: a mechanism for localizing guanine nucleotide-exchange factor action. J. Biol. Chem. 278, 42596–42603 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Lodoen, M. B. & Lanier, L. L. Natural killer cells as an initial defense against pathogens. Curr. Opin. Immunol. 18, 391–398 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth, M. J. et al. Activation of NK cell cytotoxicity. Mol. Immunol. 42, 501–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Screpanti, V., Wallin, R. P., Grandien, A. & Ljunggren, H. G. Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Mol. Immunol. 42, 495–499 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Screpanti, V., Wallin, R. P., Ljunggren, H. G. & Grandien, A. A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J. Immunol. 167, 2068–2073 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Lieberman, J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nature Rev. Immunol. 3, 361–370 (2003).

    Article  CAS  Google Scholar 

  • Trapani, J. A. & Smyth, M. J. Functional significance of the perforin/granzyme cell death pathway. Nature Rev. Immunol. 2, 735–747 (2002).

    Article  CAS  Google Scholar 

  • Arase, H., Arase, N. & Saito, T. Interferon γ production by natural killer (NK) cells and NK1.1+ T cells upon NKR-P1 cross-linking. J. Exp. Med. 183, 2391–2396 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Gosselin, P. et al. Induction of DAP12 phosphorylation, calcium mobilization, and cytokine secretion by Ly49H. J. Leukoc. Biol. 66, 165–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Ortaldo, J. R. & Young, H. A. Expression of IFN-γ upon triggering of activating Ly49D NK receptors in vitro and in vivo: costimulation with IL-12 or IL-18 overrides inhibitory receptors. J. Immunol. 170, 1763–1769 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Raulet, D. H., Vance, R. E. & McMahon, C. W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol. 19, 291–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Vivier, E., Nunès, J. A. & Vély, F. Natural killer cell signaling pathways. Science 306, 1517–1519 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lanier, L. L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Roth, C., Rothlin, C., Riou, S., Raulet, D. H. & Lemke, G. Stromal-cell regulation of natural killer cell differentiation. J. Mol. Med. 85, 1047–1056 (2007).

    Article  PubMed  Google Scholar 

  • Behrens, E. M. et al. The mer receptor tyrosine kinase: expression and function suggest a role in innate immunity. Eur. J. Immunol. 33, 2160–2167 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, M. A. et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 100, 3633–3638 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Prlic, M., Blazar, B. R., Farrar, M. A. & Jameson, S. C. In vivo survival and homeostatic proliferation of natural killer cells. J. Exp. Med. 197, 967–976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koka, R. et al. Interleukin (IL)-15Rα-deficient natural killer cells survive in normal but not IL-15Rα-deficient mice. J. Exp. Med. 197, 977–984 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois, S., Mariner, J., Waldmann, T. A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 17, 537–547 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Budagian, V. et al. A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control. EMBO J. 24, 4260–4270 (2005). This study documented the IL-15-induced transactivation of the TAM receptor AXL and showed both physical and functional crosstalk between the IL-15 receptor and AXL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broad, A., Jones, D. E. & Kirby, J. A. Toll-like receptor (TLR) response tolerance: a key physiological “damage limitation” effect and an important potential opportunity for therapy. Curr. Med. Chem. 13, 2487–2502 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Dalpke, A. H., Lehner, M. D., Hartung, T. & Heeg, K. Differential effects of CpG-DNA in Toll-like receptor-2/-4/-9 tolerance and cross-tolerance. Immunology 116, 203–212 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgel, D. et al. Elevated growth-arrest-specific protein 6 plasma levels in patients with severe sepsis. Crit. Care Med. 34, 219–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Meesters, E. W. et al. The inflammation and coagulation cross-talk in patients with systemic lupus erythematosus. Blood Coagul. Fibrinolysis 18, 21–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Brouwer, J. L., Bijl, M., Veeger, N. J., Kluin-Nelemans, H. C. & van der Meer, J. The contribution of inherited and acquired thrombophilic defects, alone or combined with antiphospholipid antibodies, to venous and arterial thromboembolism in patients with systemic lupus erythematosus. Blood 104, 143–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Song, K. S., Park, Y. S. & Kim, H. K. Prevalence of anti-protein S antibodies in patients with systemic lupus erythematosus. Arthritis Rheum. 43, 557–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kulman, J. D. et al. Vitamin K-dependent proteins in Ciona intestinalis, a basal chordate lacking a blood coagulation cascade. Proc. Natl Acad. Sci. USA 103, 15794–15799 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liongue, C. & Ward, A. C. Evolution of Class I cytokine receptors. BMC Evol. Biol. 7, 120 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krause, C. D. & Pestka, S. Evolution of the Class 2 cytokines and receptors, and discovery of new friends and relatives. Pharmacol. Ther. 106, 299–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Melaragno, M. G. et al. Gas6 inhibits apoptosis in vascular smooth muscle: role of Axl kinase and Akt. J. Mol. Cell. Cardiol. 37, 881–887 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Korshunov, V. A., Daul, M., Massett, M. P. & Berk, B. C. Axl mediates vascular remodeling induced by deoxycorticosterone acetate-salt hypertension. Hypertension 50, 1057–1062 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Korshunov, V. A., Mohan, A. M., Georger, M. A. & Berk, B. C. Axl, a receptor tyrosine kinase, mediates flow-induced vascular remodeling. Circ. Res. 98, 1446–1452 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Angelillo-Scherrer, A. et al. Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy. J. Clin. Invest. 115, 237–246 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould, W. R. et al. Gas6 receptors Axl, Sky and Mer enhance platelet activation and regulate thrombotic responses. J. Thromb. Haemost. 3, 733–741 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Angelillo-Scherrer, A. et al. Role of Gas6 in erythropoiesis and anemia in mice. J. Clin. Invest. 118, 583–596 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graham, D. K. et al. Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia. Clin. Cancer Res. 12, 2662–2669 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Keating, A. K. et al. Lymphoblastic leukemia/lymphoma in mice overexpressing the Mer (MerTK) receptor tyrosine kinase. Oncogene 25, 6092–6100 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, Y. S. et al. Tyro 3 receptor tyrosine kinase and its ligand, Gas6, stimulate the function of osteoclasts. Stem Cells 16, 229–238 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Katagiri, M. et al. Mechanism of stimulation of osteoclastic bone resorption through Gas6/Tyro 3, a receptor tyrosine kinase signaling, in mouse osteoclasts. J. Biol. Chem. 276, 7376–7382 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Shankar, S. L. et al. The growth arrest-specific gene product Gas6 promotes the survival of human oligodendrocytes via a phosphatidylinositol 3-kinase-dependent pathway. J. Neurosci. 23, 4208–4218 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar, S. L. et al. Gas6/Axl signaling activates the phosphatidylinositol 3-kinase/Akt1 survival pathway to protect oligodendrocytes from tumor necrosis factor α-induced apoptosis. J. Neurosci. 26, 5638–5648 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimojima, M., Ikeda, Y. & Kawaoka, Y. The mechanism of Axl-mediated Ebola virus infection. J. Infect. Dis. 196 (Suppl. 2), 259–263 (2007).

    Article  CAS  Google Scholar 

  • Shimojima, M. et al. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J. Virol. 80, 10109–10116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar