nature.com

GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation - Nature Reviews Immunology

  • ️Pai, Sung-Yun
  • ️Sun Feb 01 2009
  • Ko, L. & Engel, J. DNA-binding specificities of the GATA transcription factor family. Mol. Cell. Biol. 13, 4011–4022 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merika, M. & Orkin, S. DNA-binding specificity of GATA family transcription factors. Mol. Cell. Biol. 13, 3999–4010 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho, I. et al. Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J. 10, 1187–1192 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oosterwegel, M., Timmerman, J., Leiden, J. & Clevers, H. Expression of GATA-3 during lymphocyte differentiation and mouse embryogenesis. Dev. Immunol. 3, 1–11 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samson, S. I. et al. GATA-3 promotes maturation, IFN-γ production, and liver-specific homing of NK cells. Immunity 19, 701–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Zon, L. I. et al. GATA-binding transcription factors in mast cells regulate the promoter of the mast cell carboxypeptidase A gene. J. Biol. Chem. 266, 22948–22953 (1991).

    CAS  PubMed  Google Scholar 

  • Solymar, D. C., Agarwal, S., Bassing, C. H., Alt, F. W. & Rao, A. A 3′ enhancer in the IL-4 gene regulates cytokine production by Th2 cells and mast cells. Immunity 17, 41–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Asselin-Labat, M. L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nature Cell Biol. 9, 201–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  • de Guzman Strong, C. et al. Lipid defect underlies selective skin barrier impairment of an epidermal-specific deletion of Gata-3. J. Cell Biol. 175, 661–670 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman, C. K. et al. GATA-3: an unexpected regulator of cell lineage determination in skin. Genes Dev. 17, 2108–2122 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouros-Mehr, H. et al. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13, 141–152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127, 1041–1055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, K. C. et al. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nature Genet. 25, 209–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tong, Q. et al. Function of GATA transcription factors in preadipocyte–adipocyte transition. Science 290, 134–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ho, I. C. & Pai, S. Y. GATA-3 — not just for Th2 cells anymore. Cell. Mol. Immunol. 4, 15–29 (2007).

    CAS  PubMed  Google Scholar 

  • Pandolfi, P. P. et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nature Genet. 11, 40–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Ting, C. N., Olson, M. C., Barton, K. P. & Leiden, J. M. Transcription factor Gata-3 is required for development of the T-cell lineage. Nature 384, 474–478 (1996). This paper establishes the crucial role of GATA3 in T-cell lineage commitment by showing that Rag−/− blastocysts complemented with Gata3−/− embryonic stem cells generate B cells but not T cells.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, J. F. et al. Gene expression profile of murine long-term reconstituting vs. short-term reconstituting hematopoietic stem cells. Proc. Natl Acad. Sci. USA 102, 2448–2453 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand, J. Y. et al. Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc. Natl Acad. Sci. USA 102, 134–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi-Osaki, M. et al. GATA motifs regulate early hematopoietic lineage-specific expression of the Gata2 gene. Mol. Cell. Biol. 25, 7005–7020 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labastie, M. C., Cortés, F., Roméo, P. H., Dulac, C. & Péault, B. Molecular identity of hematopoietic precursor cells emerging in the human embryo. Blood 92, 3624–3635 (1998).

    CAS  PubMed  Google Scholar 

  • Mouthon, M. A. et al. Expression of tal-1 and GATA-binding proteins during human hematopoiesis. Blood 81, 647–655 (1993).

    CAS  PubMed  Google Scholar 

  • Dias, S., Silva, H., Cumano, A. & Vieira, P. Interleukin-7 is necessary to maintain the B cell potential in common lymphoid progenitors. J. Exp. Med. 201, 971–979 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, D. & Zhang, G. Enforced expression of the GATA-3 transcription factor affects cell fate decisions in hematopoiesis. Exp. Hematol. 29, 971–980 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Taghon, T. et al. Enforced expression of GATA-3 severely reduces human thymic cellularity. J. Immunol. 167, 4468–4475 (2001).

    Article  CAS  PubMed  Google Scholar 

  • David-Fung, E. S. et al. Progression of regulatory gene expression states in fetal and adult pro-T-cell development. Immunol. Rev. 209, 212–236 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tydell, C. C. et al. Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway. J. Immunol. 179, 421–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, T. M. & Zúñiga-Pflücker, J. C. Induction of T cell development from hematopoietic progenitor cells by Delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Höflinger, S. et al. Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors. J. Immunol. 173, 3935–3944 (2004).

    Article  PubMed  Google Scholar 

  • Schmitt, T. M. et al. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nature Immunol. 5, 410–417 (2004).

    Article  CAS  Google Scholar 

  • Taghon, T. N., David, E. S., Zúñiga-Pflücker, J. C. & Rothenberg, E. V. Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev. 19, 965–978 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pui, J. C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Taghon, T., Yui, M. A. & Rothenberg, E. V. Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nature Immunol. 8, 845–855 (2007). By overexpressing GATA3 in DN thymocytes cultured on an OP9 or an OP9–DLL1 stroma, these authors show that GATA3 overexpression in the presence of Notch signals is toxic, whereas GATA3 overexpression in the absence of Notch signals diverts pre-committed thymocytes to the mast-cell lineage.

    Article  CAS  Google Scholar 

  • Hozumi, K. et al. Notch signaling is necessary for GATA3 function in the initiation of T cell development. Eur. J. Immunol. 38, 977–985 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tsai, S.-F., Strauss, E. & Orkin, S. Functional analysis and in vivo footprinting implicate the erythroid transcription factor GATA-1 as a positive regulator of its own promoter. Genes Dev. 5, 919–931 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Hendriks, R. W. et al. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol. 29, 1912–1918 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Pai, S. Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003). Using mice in which thymocytes were rendered deficient in GATA3 at the DN3 and DP stages of development, these authors show that GATA3 is required for optimal β-selection and for CD4 SP thymocyte development.

    Article  CAS  PubMed  Google Scholar 

  • Bender, T. P., Kremer, C. S., Kraus, M., Buch, T. & Rajewsky, K. Critical functions for c-Myb at three checkpoints during thymocyte development. Nature Immunol. 5, 721–729 (2004).

    Article  CAS  Google Scholar 

  • Tanigaki, K. et al. Regulation of αβ/γδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wolfer, A., Wilson, A., Nemir, M., MacDonald, H. R. & Radtke, F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Neilson, J. R., Winslow, M. M., Hur, E. M. & Crabtree, G. R. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 20, 255–266 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Gu, H., Marth, J. D., Orban, P. C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Maillard, I. et al. The requirement for Notch signaling at the β-selection checkpoint in vivo is absolute and independent of the pre-T cell receptor. J. Exp. Med. 203, 2239–2245 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliahmad, P. & Kaye, J. Commitment issues: linking positive selection signals and lineage diversification in the thymus. Immunol. Rev. 209, 253–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Bosselut, R. CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals. Nature Rev. Immunol. 4, 529–540 (2004).

    Article  CAS  Google Scholar 

  • He, X. & Kappes, D. J. CD4/CD8 lineage commitment: light at the end of the tunnel? Curr. Opin. Immunol. 18, 135–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kappes, D. J., He, X. & He, X. Role of the transcription factor Th-POK in CD4:CD8 lineage commitment. Immunol. Rev. 209, 237–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Laky, K. & Fowlkes, B. J. Receptor signals and nuclear events in CD4 and CD8 T cell lineage commitment. Curr. Opin. Immunol. 17, 116–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Singer, A., Adoro, S. & Park, J. H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nature Rev. Immunol. 8, 788–801 (2008).

    Article  CAS  Google Scholar 

  • Hedrick, S. M. T cell development: bottoms-up. Immunity 16, 619–622 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hogquist, K. A. Signal strength in thymic selection and lineage commitment. Curr. Opin. Immunol. 13, 225–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Singer, A. New perspectives on a developmental dilemma: the kinetic signaling model and the importance of signal duration for the CD4/CD8 lineage decision. Curr. Opin. Immunol. 14, 207–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Matechak, E. O., Killeen, N., Hedrick, S. M. & Fowlkes, B. J. MHC class II-specific T cells can develop in the CD8 lineage when CD4 is absent. Immunity 4, 337–347 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Sarafova, S. D. et al. Modulation of coreceptor transcription during positive selection dictates lineage fate independently of TCR/coreceptor specificity. Immunity 23, 75–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Bosselut, R., Guinter, T. I., Sharrow, S. O. & Singer, A. Unraveling a revealing paradox: why major histocompatibility complex I-signaled thymocytes “paradoxically” appear as CD4+8lo transitional cells during positive selection of CD8+ T cells. J. Exp. Med. 197, 1709–1719 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas, B. & Germain, R. N. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity 5, 461–477 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Lundberg, K., Heath, W., Köntgen, F., Carbone, F. R. & Shortman, K. Intermediate steps in positive selection: differentiation of CD4+8int TCRint thymocytes into CD48+TCRhi thymocytes. J. Exp. Med. 181, 1643–1651 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Aliahmad, P. & Kaye, J. Development of all CD4 T lineages requires nuclear factor TOX. J. Exp. Med. 205, 245–256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dave, V. P., Allman, D., Keefe, R., Hardy, R. R. & Kappes, D. J. HD mice: a novel mouse mutant with a specific defect in the generation of CD4+ T cells. Proc. Natl Acad. Sci. USA 95, 8187–8192 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keefe, R., Dave, V., Allman, D., Wiest, D. & Kappes, D. J. Regulation of lineage commitment distinct from positive selection. Science 286, 1149–1153 (1999). References 62 and 63 describe the phenotype of the helper-deficient mouse strain, which lacks CD4+ T-cell development and supports the diversion of MHC class II-restricted T cells into the CD8 lineage when crossed with AND TCR-transgenic mice.

    Article  CAS  PubMed  Google Scholar 

  • He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nature Immunol. 6, 373–381 (2005). References 64 and 65 identify Zbtb7b as the gene that is mutated in helper-deficient mice. Transgenic expression of ThPOK is sufficient to divert the development of MHC class I-restricted thymocytes to the CD4 lineage.

    Article  CAS  Google Scholar 

  • Egawa, T. & Littman, D. R. ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nature Immunol. 9, 1131–1139 (2008).

    Article  CAS  Google Scholar 

  • Muroi, S. et al. Cascading suppression of transcriptional silencers by ThPOK seals helper T cell fate. Nature Immunol. 9, 1113–1121 (2008).

    Article  CAS  Google Scholar 

  • Nawijn, M. C. et al. Enforced expression of GATA-3 during T cell development inhibits maturation of CD8 single-positive cells and induces thymic lymphoma in transgenic mice. J. Immunol. 167, 715–723 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Hoyos, G., Anderson, M. K., Wang, C., Rothenberg, E. V. & Alberola-Ila, J. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19, 83–94 (2003). Using overexpression and knockdown of GATA3 expression in fetal thymocytes, the authors show that GATA3 promotes CD4 SP thymocyte development.

    Article  CAS  PubMed  Google Scholar 

  • Pai, S. Y. et al. Distinct structural requirements of GATA-3 for the regulation of thymocyte and Th2 cell differentiation. J. Immunol. 180, 1050–1059 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Maurice, D., Hooper, J., Lang, G. & Weston, K. c-Myb regulates lineage choice in developing thymocytes via its target gene Gata3. EMBO J. 26, 3629–3640 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L. et al. Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4+ T cells. Nature Immunol. 9, 1122–1130 (2008). This paper shows that GATA3 upregulates ThPOK expression in post-selection thymocytes and that GATA3 can function as a lineage-determining factor. The finding that restoration of ThPOK expression in GATA3-deficient mice failed to restore the development of CD4 SP thymocytes suggests that GATA3 has additional roles in the survival of CD4 SP thymocytes after lineage commitment.

    Article  CAS  Google Scholar 

  • He, X. et al. CD4–CD8 lineage commitment is regulated by a silencer element at the ThPOK transcription-factor locus. Immunity 28, 346–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nature Rev. Immunol. 8, 337–348 (2008).

    Article  CAS  Google Scholar 

  • Reiner, S. L. Development in motion: helper T cells at work. Cell 129, 33–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ansel, K. M., Djuretic, I., Tanasa, B. & Rao, A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol. 24, 607–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Mowen, K. A. & Glimcher, L. H. Signaling pathways in Th2 development. Immunol. Rev. 202, 203–222 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J., Yamane, H., Cote-Sierra, J., Guo, L. & Paul, W. E. GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res. 16, 3–10 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Amsen, D., Antov, A. & Flavell, R. A. The different faces of Notch in T-helper-cell differentiation. Nature Rev. Immunol. (in the press).

  • Collins, A., Littman, D. R. & Taniuchi, I. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nature Rev. Immunol. (in the press).

  • Ouyang, W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Grogan, J. L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Yamane, H., Zhu, J. & Paul, W. E. Independent roles for IL-2 and GATA-3 in stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. J. Exp. Med. 202, 793–804 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nature Immunol. 3, 643–651 (2002).

    Article  CAS  Google Scholar 

  • Lee, G. R., Fields, P. E. & Flavell, R. A. Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 14, 447–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Lee, H. J. et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remondeling in committed Th1 cells. J. Exp. Med. 192, 105–115 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spilianakis, C. G. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nature Immunol. 5, 1017–1027 (2004).

    Article  CAS  Google Scholar 

  • Tanaka, S. et al. The interleukin-4 enhancer CNS-2 is regulated by Notch signals and controls initial expression in NKT cells and memory-type CD4 T cells. Immunity 24, 689–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Xin, J., Ohmori, K., Nishida, J., Zhu, Y. & Huang, H. The initial response of CD4+ IL-4-producing cells. Int. Immunol. 19, 305–310 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sokol, C. L., Barton, G. M., Farr, A. G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nature Immunol. 9, 310–318 (2008).

    Article  CAS  Google Scholar 

  • Zhang, D. H., Cohn, L., Ray, P., Bottomly, K. & Ray, A. Transcription factor Gata-3 is differentially expressed murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J. Biol. Chem. 272, 21597–21603 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Zheng, W. P. & Flavell, R. A. The transcription factor Gata-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Pai, S. Y., Truitt, M. L. & Ho, I. C. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc. Natl Acad. Sci. USA 101, 1993–1998 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, J. et al. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nature Immunol. 5, 1157–1165 (2004). References 94 and 95 use conditional deletion of GATA3 to confirm the requirement for GATA3 in the differentiation of T H 2 cells in vitro and in vivo .

    Article  CAS  Google Scholar 

  • Kaplan, M. H., Schindler, U., Smiley, S. T. & Grusby, M. J. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4, 313–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Shimoda, K. et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Takeda, K. et al. Essential role of Stat6 in IL-4 signalling. Nature 380, 627–630 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Amsen, D. et al. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27, 89–99 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, T. C. et al. Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity 27, 100–110 (2007). References 99 and 100 show that Notch signals directly induce the transcription of GATA3 from exon 1a and that in the presence of GATA3, Notch signals can promote T H 2-cell differentiation in a STAT6-independent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asnagli, H., Afkarian, M. & Murphy, K. M. Cutting Edge: identification of an alternative GATA-3 promoter directing tissue-specific gene expression in mouse and human. J. Immunol. 168, 4268–4271 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J., Cote-Sierra, J., Guo, L. & Paul, W. E. Stat5 activation plays a critical role in Th2 differentiation. Immunity 19, 739–748 (2003). This is the first report showing that IL-2R signalling through STAT5A can promote T H 2-cell differentiation in a STAT6-independent manner.

    Article  CAS  PubMed  Google Scholar 

  • Cote-Sierra, J. et al. Interleukin 2 plays a central role in Th2 differentiation. Proc. Natl Acad. Sci. USA 101, 3880–3885 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, E. S., White, I. A. & Ho, I. C. An IL-4-independent and CD25-mediated function of c-maf in promoting the production of Th2 cytokines. Proc. Natl Acad. Sci. USA 99, 13026–13030 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranganath, S. & Murphy, K. Structure and specificity of GATA proteins in Th2 development. Mol. Cell. Biol. 21, 2716–2725 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemoto, N., Arai, K. & Miyatake, S. Cutting Edge: the differential involvement of the N-finger of GATA-3 in chromatin remodeling and transactivation during Th2 development. J. Immunol. 169, 4103–4107 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Shinnakasu, R. et al. Critical YxKxHxxxRP motif in the C-terminal region of GATA3 for its DNA binding and function. J. Immunol. 177, 5801–5810 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Smith, V. M., Lee, P. P., Szychowski, S. & Winoto, A. Gata-3 dominant negative mutant — functional redundancy of the T cell receptor α and β enhancers. J. Biol. Chem. 270, 1515–1520 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D.-H. et al. Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity 11, 473–482 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X. et al. Interaction between GATA-3 and the transcriptional coregulator Pias1 is important for the regulation of Th2 immune responses. J. Immunol. 179, 8297–8304 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Bates, D. L., Chen, Y., Kim, G., Guo, L. & Chen, L. Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. J. Mol. Biol. 381, 1292–1306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendelac, A., Savage, P. B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Godfrey, D. I. & Berzins, S. P. Control points in NKT-cell development. Nature Rev. Immunol. 7, 505–518 (2007).

    Article  CAS  Google Scholar 

  • Wang, Z. Y. et al. Regulation of Th2 cytokine expression in NKT cells: unconventional use of Stat6, GATA-3, and NFAT2. J. Immunol. 176, 880–888 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kim, P. J. et al. GATA-3 regulates the development and function of invariant NKT cells. J. Immunol. 177, 6650–6659 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Maillard, I., Fang, T. & Pear, W. S. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu. Rev. Immunol. 23, 945–974 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Osborne, B. A. & Minter, L. M. Notch signalling during peripheral T-cell activation and differentiation. Nature Rev. Immunol. 7, 64–75 (2007).

    Article  CAS  Google Scholar