nature.com

Structure and signalling in the IL-17 receptor family - Nature Reviews Immunology

  • ️Gaffen, Sarah L.
  • ️Fri Jul 03 2009
  • Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  • Gor, D. O., Rose, N. R. & Greenspan, N. S. TH1–TH2: a procrustean paradigm. Nature Immunol. 4, 503–505 (2003).

    Article  CAS  Google Scholar 

  • Steinman, L. A brief history of TH17, the first major revision in the T H1/TH2 hypothesis of T cell-mediated tissue damage. Nature Med. 13, 139–145 (2007). This review article outlines the history of discrepancies in the T H 1–T H 2 cell paradigm, presented as a 'cautionary tale' of the process of scientific inquiry.

    Article  CAS  PubMed  Google Scholar 

  • Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal, S., Ghilardi, N., Xie, M. H., De Sauvage, F. J. & Gurney, A. L. Interleukin 23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin 17. J. Biol. Chem. 3, 1910–1914 (2002).

    Google Scholar 

  • Infante-Duarte, C., Horton, H. F., Byrne, M. C. & Kamradt, T. Microbial lipopeptides induce the production of IL-17 in Th cells. J. Immunol. 165, 6107–6115 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Ghilardi, N. & Ouyang, W. Targeting the development and effector functions of Th17 cells. Semin. Immunol. 19, 383–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  • O'Quinn, D., Palmer, M., Lee, Y. & Weaver, C. Emergence of the Th17 pathway and its role in host defense. Adv. Immunol. 99, 115–163 (2008).

    Article  CAS  PubMed  Google Scholar 

  • McGeachy, M. J. & Cua, D. J. Th17 cell differentiation: the long and winding road. Immunity 28, 445–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Yu, J. & Gaffen, S. L. Interleukin-17: a novel inflammatory cytokine that bridges innate and adaptive immunity. Front. Biosci. 13, 170–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Rouvier, E., Luciani, M.-F., Mattei, M.-G., Denizot, F. & Golstein, P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 150, 5445–5456 (1993).

    CAS  PubMed  Google Scholar 

  • Yao, Z. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–821 (1995). This report describes the cloning of the first IL-17R family member, and is the first to show a role for NF-κB in IL-17-induced signal transduction.

    Article  CAS  PubMed  Google Scholar 

  • Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–2603 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Hymowitz, S. G. et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. Embo J. 20, 5332–5341 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsui, S., Nakamura, O. & Watanabe, T. Lamprey (Lethenteron japonicum) IL-17 upregulated by LPS-stimulation in the skin cells. Immunogenetics 59, 873–882 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Wright, J. F. et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J. Biol. Chem. 282, 13447–13455 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Chang, S. H. & Dong, C. A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res. 17, 435–440 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Yang, X. O. et al. Regulation of inflammatory responses by IL-17F. J. Exp. Med. 205, 1063–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, J. F. et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J. Immunol. 181, 2799–2805 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Kuestner, R. et al. Identification of the IL-17 receptor related molecule, IL-17RC, as the receptor for IL-17F. J. Immunol. 179, 5462–5473 (2007). This report shows that IL-17RC binds with high affinity to IL-17F. This is also the first functional analysis of different splice forms of any IL-17R family member.

    Article  CAS  PubMed  Google Scholar 

  • Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108–119 (2009). This report is the first to directly compare Il17a−/− and Il17f−/− mice and to show that these cytokines have markedly different functions in vivo.

    Article  CAS  PubMed  Google Scholar 

  • Gaffen, S. L., Kramer, J. M., Yu, J. J. & Shen, F. in Vitamins and Hormones Vol. 74. (ed. G. Litwack) 255–282 (Academic, London, 2006).

    Google Scholar 

  • McAllister, F. et al. Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-α and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J. Immunol. 175, 404–412 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Dong, C. Regulation and pro-inflammatory function of interleukin-17 family cytokines. Immunol. Rev. 226, 80–86 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claudio, E. et al. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation. J. Immunol. 182, 1617–1630 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Rickel, E. A. et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J. Immunol. 181, 4299–4310 (2008). This is the first report indicating that IL-17RA functions as a shared receptor signalling subunit for IL-17E and is required for its function in vivo .

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y. et al. A novel cytokine receptor–ligand pair. Identification, molecular characterization, and in vivo immunomodulatory activity. J. Biol. Chem. 275, 19167–19176 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, Y. et al. IL-17B and IL-17C are associated with TNF-α production and contribute to the exacerbation of inflammatory arthritis. J. Immunol. 179, 7128–7136 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hurst, S. D. et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J. Immunol. 169, 443–453 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Li, H. et al. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 family. Proc. Natl Acad. Sci. USA 97, 773–778 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starnes, T. et al. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J. Immunol. 167, 4137–4140 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal, S. & Gurney, A. L. IL-17: a prototype member of an emerging family. J. Leukoc. Biol. 71, 1–8 (2002).

    CAS  PubMed  Google Scholar 

  • Yao, Z. et al. Cutting edge: human IL-17: a novel cytokine derived from T cells. J. Immunol. 155, 5483–5486 (1995).

    CAS  PubMed  Google Scholar 

  • Toy, D. et al. Cutting edge: interleukin-17 signals through a heteromeric receptor complex. J. Immunol. 177, 36–39 (2006). This report is the first to show that IL-17RC is required for IL-17A-mediated signalling.

    Article  CAS  PubMed  Google Scholar 

  • Rong, Z. et al. IL-17RD (Sef or IL-17RLM) interacts with IL-17 receptor and mediates IL-17 signaling. Cell Res. 19, 208–215 (2008).

    Article  CAS  Google Scholar 

  • Ozaki, K. & Leonard, W. J. Cytokine and cytokine receptor pleiotropy and redundancy. J. Biol. Chem. 277, 29355–29358 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Shen, F. & Gaffen, S. L. Structure–function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 41, 92–104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, H. C. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nature Immunol. 9, 166–175 (2008).

    Article  CAS  Google Scholar 

  • Zeng, R. et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J. Exp. Med. 201, 139–148 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindemann, M. J., Hu, Z., Benczik, M., Liu, K. D. & Gaffen, S. L. Differential regulation of the IL-17 receptor by γ-c cytokines: inhibitory signaling by the phosphatidylinositol 3-kinase pathway. J. Biol. Chem. 283, 14100–14108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, F., Hu, Z., Goswami, J. & Gaffen, S. L. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem. 281, 24138–24148 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Maitra, A. et al. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc. Natl Acad. Sci USA 104, 7506–7511 (2007). This is the first detailed mutagenesis study of IL-17RA; it reveals a functional role for the SEFIR domain and includes the first description of the TILL domain and CBAD, which seem to be unique to IL-17RA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, F. K. Three is better than one: pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 37, 101–107 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer, J. et al. Cutting edge: identification of the pre-ligand assembly domain (PLAD) and ligand binding site in the IL-17 receptor. J. Immunol. 179, 6379–6383 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Kramer, J. et al. Cutting edge: evidence for ligand-independent multimerization of the IL-17 receptor. J. Immunol. 176, 711–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kramer, J. & Gaffen, S. Interleukin-17: a new paradigm in inflammation, autoimmunity and therapy. J. Periodontol. 78, 1083–1093 (2007).

    Article  PubMed  Google Scholar 

  • You, Z. et al. Interleukin-17 receptor-like gene is a novel antiapoptotic gene highly expressed in androgen-independent prostate cancer. Cancer Res. 66, 175–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Remy, I., Wilson, I. A. & Michnick, S. W. Erythropietin receptor activation by a ligand-induced conformation change. Science 283, 990–993 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Deng, G. M., Zheng, L., Chan, F. K. & Lenardo, M. Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nature Med. 11, 1066–1072 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Shen, F., Ruddy, M. J., Plamondon, P. & Gaffen, S. L. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-α-induced genes in bone cells. J. Leukoc. Biol. 77, 388–399 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  • Ruddy, M. J. et al. Functional cooperation between interleukin-17 and tumor necrosis factor-α is mediated by CCAAT/enhancer binding protein family members. J. Biol. Chem. 279, 2559–2567 (2004). This is the first paper to show a role for C/EBP proteins in IL-17-induced signalling.

    Article  CAS  PubMed  Google Scholar 

  • Awane, M., Andres, P. G., Li, D. J. & Reinecker, H. C. NF-κB-inducing kinase is a common mediator of IL-17-, TNF-α-, and IL-1 β-induced chemokine promoter activation in intestinal epithelial cells. J. Immunol. 162, 5337–5344 (1999).

    CAS  PubMed  Google Scholar 

  • Yamazaki, S., Muta, T., Matsuo, S. & Takeshige, K. Stimulus-specific induction of a novel nuclear factor-κB regulator, IκB-ζ, via Toll/Interleukin-1 receptor is mediated by mRNA stabilization. J. Biol. Chem. 280, 1678–1687 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Blonska, M. & Lin, X. CARMA1-mediated NF-κB and JNK activation in lymphocytes. Immunol. Rev. 228, 199–211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwandner, R., Yamaguchi, K. & Cao, Z. Requirement of tumor necrosis factor-associated factor (TRAF)6 in interleukin 17 signal transduction. J. Exp. Med. 191, 1233–1239 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, S. H., Park, H. & Dong, C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem. 281, 35603–35607 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Novatchkova, M., Leibbrandt, A., Werzowa, J., Neubuser, A. & Eisenhaber, F. The STIR-domain superfamily in signal transduction, development and immunity. Trends Biochem. Sci. 28, 226–229 (2003). This is a groundbreaking bioinformatic analysis describing the SEFIR domain, a motif that is found in members of the IL-17R family and in ACT1 and that is homologous to TIR domains.

    Article  CAS  PubMed  Google Scholar 

  • Toshchakov, V. & Vogel, S. Cell-penetrating TIR BB loop decoy peptides: A novel class of TLR signaling inhibitors and a tool to study topology of TIR–TIR interactions. Expt. Op. Biol. Ther. 7, 1035–1050 (2007).

    Article  CAS  Google Scholar 

  • Shen, F. et al. IL-17 receptor signaling inhibits C/EBPβ by sequential phosphorylation of the regulatory 2 domain. Sci. Signal. 2, ra8 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Linden, A. A role for the cytoplasmic adaptor proteins Act1 in mediating IL-17 signaling. Sci. STKE 2007, re4 (2007).

    Article  PubMed  Google Scholar 

  • Qian, Y. et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nature Immunol. 8, 247–256 (2007). This study, together with reference 58, is the first to show that ACT1 binds to IL-17RA and is required for downstream signalling.

    Article  CAS  Google Scholar 

  • Wolf, K., Plano, G. V. & Fields, K. A. A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL-17 signaling via interaction with human Act1. Cell. Microbiol. 11, 769–779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, P. Post-transcriptional control of cytokine production. Nature Immunol. 9, 353–359 (2008).

    Article  CAS  Google Scholar 

  • Hartupee, J. et al. IL-17 signaling for mRNA stabilization does not require TNF receptor-associated factor 6. J. Immunol. 182, 1660–1666 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Matsushita, K. et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185–1190 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Litvak, V. et al. Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nature Immunol. 10, 437–443 (2009).

    Article  CAS  Google Scholar 

  • Ramji, D. P. & Foka, P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem. J. 365, 561–575 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, Q. Q. et al. Sequential phosphorylation of CCAAT enhancer-binding protein β by MAPK and glycogen synthase kinase 3β is required for adipogenesis. Proc. Natl Acad. Sci. USA 102, 9766–9771 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miossec, P. Interleukin-17 in rheumatoid arthritis: if T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum. 48, 594–601 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hartupee, J., Liu, C., Novotny, M., Li, X. & Hamilton, T. IL-17 enhances chemokine gene expression through mRNA stabilization. J. Immunol. 179, 4135–4141 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Huang, F. et al. Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1-dependent NF-κB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells. J. Immunol. 179, 6504–6513 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Kim, K. W. et al. Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor κB-dependent pathway in patients with rheumatoid arthritis. Arthritis Res. Ther. 7, R139–R148 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Rong, Z. et al. Interleukin-17F signaling requires ubiquitination of interleukin-17 receptor via TRAF6. Cell Signal. 19, 1514–1520 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med. 14, 282–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Haudenschild, D., Moseley, T., Rose, L. & Reddi, A. H. Soluble and transmembrane isoforms of novel interleukin-17 receptor-like protein by RNA splicing and expression in prostate cancer. J. Biol. Chem. 277, 4309–4316 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Haudenschild, D. R., Curtiss, S. B., Moseley, T. A. & Reddi, A. H. Generation of interleukin-17 receptor-like protein (IL-17RL) in prostate by alternative splicing of RNA. Prostate 66, 1268–1274 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem. 276, 1660–1664 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Moseley, T. A., Haudenschild, D. R., Rose, L. & Reddi, A. H. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 14, 155–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Maezawa, Y. et al. Involvement of TNF receptor-associated factor 6 in IL-25 receptor signaling. J. Immunol. 176, 1013–1018 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Angkasekwinai, P. et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204, 1509–1517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaidani, S. et al. The critical role of epithelial-derived Act1 in IL-17- and IL-25-mediated pulmonary inflammation. J. Immunol. 182, 1631–1640 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Pancer, Z., Mayer, W. E., Klein, J. & Cooper, M. D. Prototypic T cell receptor and CD4-like coreceptor are expressed by lymphocytes in the agnathan sea lamprey. Proc. Natl Acad. Sci USA 101, 13273–13278 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang, M., Friesel, R., Kudoh, T. & Dawid, I. Identification of Sef, a novel modulator of FGF signalling. Nature Cell Biol. 4, 165–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Yang, R. B. et al. A novel interleukin-17 receptor-like protein identified in human umbilical vein endothelial cells antagonizes basic fibroblast growth factor-induced signaling. J. Biol. Chem. 278, 33232–33238 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Xiong, S. et al. hSef inhibits PC-12 cell differentiation by interfering with Ras–mitogen-activated protein kinase MAPK signaling. J. Biol. Chem. 278, 50273–50282 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Preger, E. et al. Alternative splicing generates an isoform of the human Sef gene with altered subcellular localization and specificity. Proc. Natl Acad. Sci. USA 101, 1229–1234 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X. et al. Sef interacts with TAK1 and mediates JNK activation and apoptosis. J. Biol. Chem. 279, 38099–38102 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Li, T. S., Li, X. N., Chang, Z. J., Fu, X. Y. & Liu, L. Identification and functional characterization of a novel interleukin 17 receptor: a possible mitogenic activation through ras/mitogen-activated protein kinase signaling pathway. Cell Signal. 18, 1287–1298 (2006).

    Article  PubMed  CAS  Google Scholar 

  • McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nature Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  Google Scholar 

  • Kikly, K., Liu, L., Na, S. & Sedgwick, J. D. The IL-23/Th17 axis: therapeutic targets for autoimmune inflammation. Curr. Opin. Immunol. 18, 670–675 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lubberts, E. IL-17/Th17 targeting: on the road to prevent chronic destructive arthritis? Cytokine 41, 84–91 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med 194, 519–527 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabaud, M., Lubberts, E., Joosten, L., van Den Berg, W. & Miossec, P. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res. 3, 168–177 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubberts, E. et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J. Immunol. 167, 1004–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med 198, 1951–1957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  • Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duerr, R. H. et al. A Genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Mangan, P. R. et al. Transforming growth factor-β induces development of the T H17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector T H17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ivanov, I. et al. The orphan nuclear receptor RORγT directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med 203, 2271–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L. et al. IL-6 programs T H-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunol. 8, 967–974 (2007).

    Article  CAS  Google Scholar 

  • Milner, J. D. et al. Impaired T H17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar