nature.com

Macrophage death and defective inflammation resolution in atherosclerosis - Nature Reviews Immunology

  • ️Tabas, Ira
  • ️Fri Dec 04 2009
  • Serhan, C. N. et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 21, 325–332 (2007). This review presents an outstanding summary of the principles of inflammation resolution, many of which apply to the concept of resolution failure in atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence, T. & Gilroy, D. W. Chronic inflammation: a failure of resolution? Int. J. Exp. Pathol. 88, 85–94 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez, F. O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451–483 (2009).

    Article  CAS  PubMed  Google Scholar 

  • [No authors listed]. 2007 NHLBI Morbidity and Mortality Chart Book. NHLBI Morbidity and Mortality Chartbook [online], (2007).

  • Grundy, S. M. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab. 89, 2595–2600 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Tabas, I., Williams, K. J. & Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Lusis, A. J. Atherosclerosis. Nature 407, 233–241 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glass, C. K. & Witztum, J. L. Atherosclerosis: the road ahead. Cell 104, 503–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Tabas, I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol. 25, 2255–2264 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Schrijvers, D. M., De Meyer, G. R., Herman, A. G. & Martinet, W. Phagocytosis in atherosclerosis: Molecular mechanisms and implications for plaque progression and stability. Cardiovasc. Res. 73, 470–480 (2007). References 9 and 10 present the concept that efferocytosis, a key process in inflammation resolution, is defective in advanced atherosclerotic lesions and is an important factor in plaque necrosis.

    Article  CAS  PubMed  Google Scholar 

  • Merched, A. J., Ko, K., Gotlinger, K. H., Serhan, C. N. & Chan, L. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J. 22, 3595–3606 (2008). This paper provides evidence that lipid mediators of inflammation resolution derived from 12,15-lipoxygenase, including lipoxin A4, resolvin D1 and protectin D1, suppress atherosclerotic plaque progression in the Apoe−/− mouse model of atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randolph, G. J. Emigration of monocyte-derived cells to lymph nodes during resolution of inflammation and its failure in atherosclerosis. Curr. Opin. Lipidol. 19, 462–468 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virmani, R., Burke, A. P., Kolodgie, F. D. & Farb, A. Vulnerable plaque: the pathology of unstable coronary lesions. J. Interv. Cardiol. 15, 439–446 (2002).

    Article  Google Scholar 

  • Swirski, F. K. et al. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc. Natl Acad. Sci. USA 103, 10340–10345 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007). References 14 and 15 show that inflammatory monocytes continually enter atherosclerotic lesions even after inflammation has been long-standing. This finding supports the concept that a key process in inflammation resolution (eventual suppression of inflammatory cell influx) is defective in atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla, A. et al. PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Med. 7, 48–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007). Although not dealing directly with atherogenesis, this paper provides a link between the PPAR family of transcriptional activators and a key process in inflammation resolution, namely the alternative activation of macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nofer, J. R. et al. FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 115, 501–508 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Laurat, E. et al. In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 104, 197–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Li, A. C. et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ. J. Clin. Invest. 114, 1564–1576 (2004). This study showed that PPAR γ , a mediator of inflammation resolution and cholesterol efflux in atherosclerotic macrophages, has a beneficial effect on lesion progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angeli, V. et al. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 21, 561–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Llodra, J. et al. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc. Natl Acad. Sci. USA 101, 11779–11784 (2004). This paper provides in vivo evidence that macrophage egress, a key process in inflammation resolution, is defective in mouse atherosclerotic lesions but that it can occur in a setting in which regression of atherosclerosis is promoted.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quah, B. J. & O'Neill, H. C. Maturation of function in dendritic cells for tolerance and immunity. J. Cell. Mol. Med. 9, 643–654 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trogan, E. et al. Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc. Natl Acad. Sci. USA 103, 3781–3786 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosser, D. M. & Zhang, X. Interleukin-10: new perspectives on an old cytokine. Immunol. Rev. 226, 205–218 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serhan, C. N., Chiang, N. & Van Dyke, T. E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nature Rev. Immunol. 8, 349–361 (2008).

    Article  CAS  Google Scholar 

  • Willoughby, D. A., Moore, A. R., Colville-Nash, P. R. & Gilroy, D. Resolution of inflammation. Int. J. Immunopharmacol. 22, 1131–1135 (2000).

    Article  CAS  Google Scholar 

  • Serhan, C. N. et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J. Exp. Med. 206, 15–23 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph, S. B., Castrillo, A., Laffitte, B. A., Mangelsdorf, D. J. & Tontonoz, P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nature Med. 9, 213–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Huang, J. T. et al. Interleukin-4-dependent production of PPAR-γ ligands in macrophages by 12/15-lipoxygenase. Nature 400, 378–382 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. et al. Extracellular Nampt promotes macrophage survival via a nonenzymatic interleukin-6/STAT3 signalling mechanism. J. Biol. Chem. 283, 34833–34843 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingnau, M., Hoflich, C., Volk, H. D., Sabat, R. & Docke, W. D. Interleukin-10 enhances the CD14-dependent phagocytosis of bacteria and apoptotic cells by human monocytes. Hum. Immunol. 68, 730–738 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Pinderski, L. J. et al. Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ. Res. 90, 1064–1071 (2002). This paper directly links the inflammation-resolving cytokine IL-10 with the key end point of plaque necrosis in mouse atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  • Seljeflot, I., Hurlen, M., Solheim, S. & Arnesen, H. Serum levels of interleukin-10 are inversely related to future events in patients with acute myocardial infarction. J. Thromb. Haemost. 2, 350–352 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wahl, S. M., Swisher, J., Cartney-Francis, N. & Chen, W. TGF-β: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. J. Leukoc. Biol. 76, 15–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Huynh, M. L., Fadok, V. A. & Henson, P. M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. J. Clin. Invest. 109, 41–50 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frutkin, A. D. et al. TGF-β1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein e-null mice. Arterioscler. Thromb. Vasc. Biol. 29, 1251–1257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallat, Z. et al. Inhibition of transforming growth factor-β signalling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 89, 930–934 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Lutgens, E. et al. Transforming growth factor-β mediates balance between inflammation and fibrosis during plaque progression. Arterioscler. Thromb. Vasc. Biol. 22, 975–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Bahekar, A. A., Singh, S., Saha, S., Molnar, J. & Arora, R. The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis. Am. Heart J. 154, 830–837 (2007).

    Article  PubMed  Google Scholar 

  • Van Dyke, T. E. Resolution of inflammation-unraveling mechanistic links between periodontitis and cardiovascular disease. J. Dent. 37, S582–S583 (2009).

    Article  Google Scholar 

  • Peters-Golden, M. Putting on the brakes: cyclic AMP as a multipronged controller of macrophage function. Sci. Signal. 2, pe37 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Takayama, K. et al. Prostaglandin E2 suppresses chemokine production in human macrophages through the EP4 receptor. J. Biol. Chem. 277, 44147–44154 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Wall, E. A. et al. Suppression of LPS-induced TNF-α production in macrophages by cAMP is mediated by PKA-AKAP95-p105. Sci. Signal. 2, ra28 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babaev, V. R. et al. Macrophage EP4 deficiency increases apoptosis and suppresses early atherosclerosis. Cell Metab. 8, 492–501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marathe, C. et al. The arginase II gene is an anti-inflammatory target of liver X receptor in macrophages. J. Biol. Chem. 281, 32197–32206 (2006).

    Article  CAS  Google Scholar 

  • Hong, C. & Tontonoz, P. Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr. Opin. Genet. Dev. 18, 461–467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castrillo, A., Joseph, S. B., Marathe, C., Mangelsdorf, D. J. & Tontonoz, P. Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J. Biol. Chem. 278, 10443–10449 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Venkateswaran, A. et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRα. Proc. Natl Acad. Sci. USA 97, 12097–12102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tall, A. R. Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J. Intern. Med. 263, 256–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Joseph, S. B. et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl Acad. Sci. USA 99, 7604–7609 (2002). This paper provides in vivo evidence linking LXR family members, mediators of inflammation resolution and cholesterol efflux in atherosclerotic macrophages, with a beneficial effect on lesion progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin, N. et al. Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler. Thromb. Vasc. Biol. 25, 135–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Bradley, M. N. et al. Ligand activation of LXRβ reverses atherosclerosis and cellular cholesterol overload in mice lacking LXRα and apoE. J. Clin. Invest. 117, 2337–2346 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebe, C. et al. Induction of transglutaminase 2 by a liver X receptor/retinoic acid receptor-α pathway increases the clearance of apoptotic cells by human macrophages. Circ. Res. 105, 393–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, N. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009).

    Article  CAS  Google Scholar 

  • Kockx, M. M. et al. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97, 2307–2315 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. et al. Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler. Thromb. Vasc. Biol. 25, 174–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Boesten, L. S. et al. Macrophage p53 controls macrophage death in atherosclerotic lesions of apolipoprotein E deficient mice. Atherosclerosis 88, 780–786 (2009).

    Google Scholar 

  • Arai, S. et al. A role for the apoptosis inhibitory factor AIM/Spα/Api6 in atherosclerosis development. Cell Metab. 1, 201–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wang, B. Y. et al. Regression of atherosclerosis: role of nitric oxide and apoptosis. Circulation 99, 1236–1241 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Bhatia, V. K. et al. Complement C1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice. Am. J. Pathol. 170, 416–426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabas, I. Apoptosis and plaque destabilization: the role of macrophage apoptosis induced by cholesterol. Cell Death. Differ. 11, S12–S16 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Zinszner, H. et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982–995 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G. et al. Role of ERO1α-mediated stimulation of inositol 1, 4, 5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J. Cell Biol. 186, 783–792 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmins, J. M. et al. Calcium/calmodulin-dependent protein kinase II links endoplasmic reticulum stress with Fas and mitochondrial apoptosis pathways. J. Clin. Invest. 119, 2925–2941 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seimon, T. & Tabas, I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J. Lipid Res. 50, S382–S387 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVries-Seimon, T. et al. Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J. Cell Biol. 171, 61–73 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seimon, T. A., Obstfeld, A., Moore, K. J., Golenbock, D. T. & Tabas, I. Combinatorial pattern recognition receptor signalling alters the balance of life and death in macrophages. Proc. Natl Acad. Sci. USA 103, 19794–19799 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld, M. E. et al. Animal models of spontaneous plaque rupture: the holy grail of experimental atherosclerosis research. Curr. Atheroscler. Rep. 4, 238–242 (2002).

    Article  PubMed  Google Scholar 

  • Feng, B. et al. Niemann-Pick C heterozygosity confers resistance to lesional necrosis and macrophage apoptosis in murine atherosclerosis. Proc. Natl Acad. Sci. USA 100, 10423–10428 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, W. S. et al. STAT1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo. Circulation 117, 940–951 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorp, E. et al. Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe−/− and Ldlr−/− mice lacking CHOP. Cell Metab. 9, 474–481 (2009). This paper provides in vivo evidence that the UPR effector CHOP has an important role in macrophage apoptosis and plaque necrosis in advanced atherosclerotic lesions in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning-Tobin, J. J. et al. Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler. Thromb. Vasc. Biol. 29, 19–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Liang, C. P. et al. Increased CD36 protein as a response to defective insulin signalling in macrophages. J. Clin. Invest. 113, 764–773 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, S. et al. Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab. 3, 257–266 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Seimon, T. A. et al. Macrophage deficiency of p38α MAPK promotes apoptosis and plaque necrosis in advanced atherosclerotic lesions in mice. J. Clin. Invest. 119, 886–898 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gargalovic, P. S. et al. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26, 2490–2496 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Myoishi, M. et al. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116, 1226–1233 (2007).

    Article  PubMed  Google Scholar 

  • Sanson, M. et al. Oxidized low-density lipoproteins trigger endoplasmic reticulum stress in vascular cells: prevention by oxygen-regulated protein 150 expression. Circ. Res. 104, 328–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Henson, P. M., Bratton, D. L. & Fadok, V. A. Apoptotic cell removal. Curr. Biol. 11, R795–R805 (2001).

    Article  CAS  PubMed  Google Scholar 

  • De Lorenzo, B. H. et al. Macrophage suppression following phagocytosis of apoptotic neutrophils is mediated by the S100A9 calcium-binding protein. Immunobiology 3 Aug 2009 (doi:10.1016/j.imbio.2009.05.013).

    Article  CAS  PubMed  Google Scholar 

  • Mallat, Z. et al. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 99, 348–353 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Schrijvers, D. M., De Meyer, G. R., Kockx, M. M., Herman, A. G. & Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 25, 1256–1261 (2005). This study used an in situ assay to provide evidence that efferocytosis is defective in advanced human atherosclerotic lesions.

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran, K. S. & Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nature Rev. Immunol. 7, 964–974 (2007).

    Article  CAS  Google Scholar 

  • Peter, C. et al. Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A. J. Biol. Chem. 283, 5296–5305 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Gardai, S. J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through transactivation of LRP on the phagocyte. Cell 123, 321–334 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z. New phosphatidylserine receptors: clearance of apoptotic cells and more. Dev. Cell 13, 759–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Boisvert, W. A. et al. Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size. Arterioscler. Thromb. Vasc. Biol. 26, 563–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ait-Oufella, H. et al. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation 115, 2168–2177 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Thorp, E., Cui, D., Schrijvers, D. M., Kuriakose, G. & Tabas, I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of Apoe−/− mice. Arterioscler. Thromb. Vasc. Biol. 28, 1421–1428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ait-Oufella, H. et al. Defective mer receptor tyrosine kinase signalling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28, 1429–1431 (2008). References 90 and 91 provide in vivo evidence that the phagocyte receptor MERTK has an important role in mediating efferocytosis and thus preventing plaque necrosis in advanced mouse atheroma.

    Article  CAS  PubMed  Google Scholar 

  • Aprahamian, T. et al. Impaired clearance of apoptotic cells promotes synergy between atherogenesis and autoimmune disease. J. Exp. Med. 199, 1121–1131 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby, P. et al. Macrophages and atherosclerotic plaque stability. Curr. Opin. Lipidol. 7, 330–335 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. et al. Cholesterol-induced apoptotic macrophages elicit an inflammatory response in phagocytes, which is partially attenuated by the Mer receptor. J. Biol. Chem. 281, 6707–6717 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Cui, D. et al. Pivotal advance: macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. J. Leukoc. Biol. 82, 1040–1050 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sather, S. et al. A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 109, 1026–1033 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komura, H., Miksa, M., Wu, R., Goyert, S. M. & Wang, P. Milk fat globule epidermal growth factor-factor VIII is downregulated in sepsis via the lipopolysaccharide–CD14 pathway. J. Immunol. 182, 581–587 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Zou, W. et al. Caenorhabditis elegans myotubularin MTM-1 negatively regulates the engulfment of apoptotic cells. PLoS. Genet. 5, e1000679 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, W. et al. IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107, 4930–4937 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukundan, L. et al. PPARδ senses and orchestrates clearance of apoptotic cells to promote tolerance. Nature Med. 15, 1266–1272 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Wilson, P. W., Castelli, W. P. & Kannel, W. B. Coronary risk prediction in adults (the Framingham Heart Study). Am. J. Cardiol. 59, 91G–94G (1987).

    Article  CAS  PubMed  Google Scholar 

  • Aprahamian, T., Takemura, Y., Goukassian, D. & Walsh, K. Ageing is associated with diminished apoptotic cell clearance in vivo. Clin. Exp. Immunol. 152, 448–455 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal, A. et al. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signalling pathway. J. Immunol. 178, 6912–6922 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Liew, F. Y., Xu, D., Brint, E. K. & O'Neill, L. A. Negative regulation of Toll-like receptor-mediated immune responses. Nature Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

  • Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature Med. 15, 940–945 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Zernecke, A. et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ. Res. 102, 209–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Saito, Y. et al. Effects of EPA on coronary artery disease in hypercholesterolemic patients with multiple risk factors: sub-analysis of primary prevention cases from the Japan EPA Lipid Intervention Study (JELIS). Atherosclerosis 200, 135–140 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Li, S. et al. Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of ob/ob mice and its reversal by a fish oil diet. Circ. Res. 15 Oct 2009 (doi:10.1161/CIRCRESAHA.109.199570).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Sullivan, T. P. et al. Aromatic lipoxin A4 and lipoxin B4 analogues display potent biological activities. J. Med. Chem. 50, 5894–5902 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Burstein, S. H. & Zurier, R. B. Cannabinoids, endocannabinoids, and related analogues in inflammation. AAPS J. 11, 109–119 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dol-Gleizes, F. et al. Rimonabant, a selective cannabinoid CB1 receptor antagonist, inhibits atherosclerosis in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 29, 12–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Moreira, F. A. & Crippa, J. A. The psychiatric side-effects of rimonabant. Rev. Bras. Psiquiatr. 31, 145–153 (2009).

    Article  PubMed  Google Scholar 

  • Maderna, P., Yona, S., Perretti, M. & Godson, C. Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac2–26 . J. Immunol. 174, 3727–3733 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wickline, S. A., Neubauer, A. M., Winter, P. M., Caruthers, S. D. & Lanza, G. M. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging 25, 667–680 (2007).

    Article  Google Scholar 

  • Chen, Y. et al. Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J. Immunol. 183, 1346–1359 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Hallett, J. M. et al. Novel pharmacological strategies for driving inflammatory cell apoptosis and enhancing the resolution of inflammation. Trends Pharmacol. Sci. 29, 250–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Rouleau, J. Improved outcome after acute coronary syndromes with an intensive versus standard lipid-lowering regimen: results from the Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) trial. Am. J. Med. 118, S28–S35 (2005).

    Article  CAS  Google Scholar 

  • Strong, J. P., Malcom, G. T., Oalmann, M. C. & Wissler, R. W. The PDAY study: natural history, risk factors, and pathobiology. Pathobiological Determinants of Atherosclerosis in Youth. Ann. NY Acad. Sci. 811, 226–237 (1997).

    Article  CAS  PubMed  Google Scholar