nature.com

Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes - Nature Reviews Molecular Cell Biology

  • ️Peterson, Craig L.
  • ️Wed May 17 2017
  • Clapier, C. R. & Cairns, B. R. in Fundamentals of Chromatin (eds Workman, J. L. & Abmayr, S. M.) 69–146 (Springer, 2014).

    Book  Google Scholar 

  • Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, B. G. & Roberts, C. W. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 11, 481–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Lai, A. Y. & Wade, P. A. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat. Rev. Cancer 11, 588–596 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Bartholomew, B. Regulating the chromatin landscape: structural and mechanistic perspectives. Annu. Rev. Biochem. 83, 671–696 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narlikar, G. J., Sundaramoorthy, R. & Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargreaves, D. C. & Crabtree, G. R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker, P. B. & Workman, J. L. Nucleosome remodeling and epigenetics. Cold Spring Harb. Perspect. Biol. http://dx.doi.org/10.1101/cshperspect.a017905 (2013).

  • Flaus, A., Martin, D. M., Barton, G. J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurard-Levin, Z. A., Quivy, J. P. & Almouzni, G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu. Rev. Biochem. 83, 487–517 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Torigoe, S. E., Urwin, D. L., Ishii, H., Smith, D. E. & Kadonaga, J. T. Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF. Mol. Cell 43, 638–648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei, J. et al. The prenucleosome, a stable conformational isomer of the nucleosome. Genes Dev. 29, 2563–2575 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corona, D. F. et al. ISWI is an ATP-dependent nucleosome remodeling factor. Mol. Cell 3, 239–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Varga-Weisz, P. D. et al. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602 (1997); erratum 389, 1003 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Lusser, A., Urwin, D. L. & Kadonaga, J. T. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat. Struct. Mol. Biol. 12, 160–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R. & Kadonaga, J. T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Boeger, H., Griesenbeck, J., Strattan, J. S. & Kornberg, R. D. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell 14, 667–673 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004). This study demonstrated for the first time that SWR1C carries out nucleosome editing that involves H2A.Z.

    Article  CAS  PubMed  Google Scholar 

  • Ruhl, D. D. et al. Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A. Z into nucleosomes. Biochemistry 45, 5671–5677 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lia, G. et al. Direct observation of DNA distortion by the RSC complex. Mol. Cell 21, 417–425 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y. et al. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol. Cell 24, 559–568 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirinakis, G. et al. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size. EMBO J. 30, 2364–2372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada, B. T. et al. Stepwise nucleosome translocation by RSC remodeling complexes. eLife 5, e10051 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Blosser, T. R., Yang, J. G., Stone, M. D., Narlikar, G. J. & Zhuang, X. Dynamics of nucleosome remodelling by individual ACF complexes. Nature 462, 1022–1027 (2009). References 23–26 investigate the size of the DNA step that occurs during DNA translocation by SWI/SNF remodellers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langst, G. & Becker, P. B. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8, 1085–1092 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Saha, A., Wittmeyer, J. & Cairns, B. R. Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev. 16, 2120–2134 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehouse, I., Stockdale, C., Flaus, A., Szczelkun, M. D. & Owen-Hughes, T. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell. Biol. 23, 1935–1945 (2003). References 28 and 29 demonstrated for the first time that chromatin remodellers act by DNA translocation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zofall, M., Persinger, J. & Bartholomew, B. Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2. Mol. Cell. Biol. 24, 10047–10057 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strohner, R. et al. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling. Nat. Struct. Mol. Biol. 12, 683–690 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Stockdale, C., Flaus, A., Ferreira, H. & Owen-Hughes, T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281, 16279–16288 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Clapier, C. R. & Cairns, B. R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492, 280–284 (2012). This work demonstrates that the ISWI ATPase is an intrinsically active DNA translocase that is regulated by 'inhibition of inhibition' of both ATPase activity and coupling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjan, A. et al. H2A histone-fold and DNA elements in nucleosome activate SWR1-mediated H2A.Z replacement in budding yeast. eLife 4, e06845 (2015). This work demonstrates that SWR1C interacts with nucleosomes at position SHL2 and that histone exchange requires DNA translocation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clapier, C. R. et al. Regulation of DNA translocation efficiency within the chromatin remodeler RSC/Sth1 potentiates nucleosome sliding and ejection. Mol. Cell 62, 453–461 (2016). This study shows that nucleosome ejection by the Sth1 ATPase is achieved through the upregulation of DNA translocation efficiency, and that actin-related proteins are required by the remodeller RSC for nucleosome ejection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamiche, A., Sandaltzopoulos, R., Gdula, D. A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833–842 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Langst, G., Bonte, E. J., Corona, D. F. & Becker, P. B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852 (1999). References 36 and 37 reveal the capacity of ISWI subfamily remodellers to perform nucleosome sliding.

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse, I. et al. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature 400, 784–787 (1999). This work showed for the first time that SWI/SNF subfamily remodellers carry out nucleosome sliding.

    Article  CAS  PubMed  Google Scholar 

  • Gavin, I., Horn, P. J. & Peterson, C. L. SWI/SNF chromatin remodeling requires changes in DNA topology. Mol. Cell 7, 97–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Fyodorov, D. V. & Kadonaga, J. T. Dynamics of ATP-dependent chromatin assembly by ACF. Nature 418, 897–900 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kassabov, S. R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11, 391–403 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald, D. J. et al. Reaction cycle of the yeast Isw2 chromatin remodeling complex. EMBO J. 23, 3836–3843 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagalwala, M. N., Glaus, B. J., Dang, W., Zofall, M. & Bartholomew, B. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23, 2092–2104 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwanbeck, R., Xiao, H. & Wu, C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279, 39933–39941 (2004). References 43 and 44 define the binding of the ISWI subfamily remodellers to extranucleosomal DNA, and within the nucleosome two DNA helical turns from the dyad.

    Article  CAS  PubMed  Google Scholar 

  • Saha, A., Wittmeyer, J. & Cairns, B. R. Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol. 7, 437–447 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. G., Madrid, T. S., Sevastopoulos, E. & Narlikar, G. J. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat. Struct. Mol. Biol. 13, 1078–1083 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Singleton, M. R., Dillingham, M. S. & Wigley, D. B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hauk, G., McKnight, J. N., Nodelman, I. M. & Bowman, G. D. The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol. Cell 39, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, X., Liu, X., Li, T., Fang, X. & Chen, Z. Structure of chromatin remodeler Swi2/Snf2 in the resting state. Nat. Struct. Mol. Biol. 23, 722–729 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Yan, L., Wang, L., Tian, Y., Xia, X. & Chen, Z. Structure and regulation of the chromatin remodeller ISWI. Nature 540, 466–469 (2016). References 48–50 present the crystal structures of the Chd1, Snf2 and ISWI chromatin remodellers.

    Article  CAS  PubMed  Google Scholar 

  • Deindl, S. et al. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 152, 442–452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Saha, A., Wittmeyer, J. & Cairns, B. R. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat. Struct. Mol. Biol. 12, 747–755 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Lorch, Y., Zhang, M. & Kornberg, R. D. Histone octamer transfer by a chromatin-remodeling complex. Cell 96, 389–392 (1999). This was the first report of nucleosome ejection by SWI/SNF remodellers.

    Article  CAS  PubMed  Google Scholar 

  • Zofall, M., Persinger, J., Kassabov, S. R. & Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13, 339–346 (2006). References 53 and 55 demonstrate that DNA translocation occurs within the nucleosome.

    Article  CAS  PubMed  Google Scholar 

  • Sen, P. et al. The SnAC domain of SWI/SNF is a histone anchor required for remodeling. Mol. Cell. Biol. 33, 360–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udugama, M., Sabri, A. & Bartholomew, B. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell. Biol. 31, 662–673 (2011).

    Article  CAS  PubMed  Google Scholar 

  • McKnight, J. N., Jenkins, K. R., Nodelman, I. M., Escobar, T. & Bowman, G. D. Extranucleosomal DNA binding directs nucleosome sliding by Chd1. Mol. Cell. Biol. 31, 4746–4759 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwigsen, J., Klinker, H. & Mueller-Planitz, F. No need for a power stroke in ISWI-mediated nucleosome sliding. EMBO Rep. 14, 1092–1097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, W. L., Deindl, S., Harada, B. T. & Zhuang, X. Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA. Nature 512, 213–217 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukiyama, T., Becker, P. B. & Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525–532 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Kang, J. G., Hamiche, A. & Wu, C. GAL4 directs nucleosome sliding induced by NURF. EMBO J. 21, 1406–1413 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nodelman, I. M. et al. The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome. Nucleic Acids Res. 44, 7580–7591 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiechens, N. et al. The chromatin remodelling enzymes SNF2H and SNF2L position nucleosomes adjacent to CTCF and other transcription factors. PLoS Genet. 12, e1005940 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clapier, C. R., Langst, G., Corona, D. F., Becker, P. B. & Nightingale, K. P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875–883 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamiche, A., Kang, J. G., Dennis, C., Xiao, H. & Wu, C. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. Proc. Natl Acad. Sci. USA 98, 14316–14321 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapier, C. R., Nightingale, K. P. & Becker, P. B. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res. 30, 649–655 (2002). References 65–67 report the discovery and characterization of the activation of the ISWI remodeller by the histone H4 tail basic patch.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fazzio, T. G., Gelbart, M. E. & Tsukiyama, T. Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo. Mol. Cell. Biol. 25, 9165–9174 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang, W., Kagalwala, M. N. & Bartholomew, B. Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA. Mol. Cell. Biol. 26, 7388–7396 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racki, L. R. et al. The histone H4 tail regulates the conformation of the ATP-binding pocket in the SNF2h chromatin remodeling enzyme. J. Mol. Biol. 426, 2034–2044 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller-Planitz, F., Klinker, H., Ludwigsen, J. & Becker, P. B. The ATPase domain of ISWI is an autonomous nucleosome remodeling machine. Nat. Struct. Mol. Biol. 20, 82–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Racki, L. R. et al. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462, 1016–1021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard, J. D. & Narlikar, G. J. A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler. Mol. Cell 57, 850–859 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asturias, F. J., Chung, W. H., Kornberg, R. D. & Lorch, Y. Structural analysis of the RSC chromatin-remodeling complex. Proc. Natl Acad. Sci. USA 99, 13477–13480 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, C. L., Horowitz-Scherer, R., Flanagan, J. F., Woodcock, C. L. & Peterson, C. L. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat. Struct. Biol. 10, 141–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Leschziner, A. E., Lemon, B., Tjian, R. & Nogales, E. Structural studies of the human PBAF chromatin-remodeling complex. Structure 13, 267–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Leschziner, A. E. et al. Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method. Proc. Natl Acad. Sci. USA 104, 4913–4918 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skiniotis, G., Moazed, D. & Walz, T. Acetylated histone tail peptides induce structural rearrangements in the RSC chromatin remodeling complex. J. Biol. Chem. 282, 20804–20808 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Chaban, Y. et al. Structure of a RSC-nucleosome complex and insights into chromatin remodeling. Nat. Struct. Mol. Biol. 15, 1272–1277 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dechassa, M. L. et al. Architecture of the SWI/SNF-nucleosome complex. Mol. Cell. Biol. 28, 6010–6021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno, M., Flaus, A. & Owen-Hughes, T. Site-specific attachment of reporter compounds to recombinant histones. Methods Enzymol. 375, 211–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lorch, Y., Maier-Davis, B. & Kornberg, R. D. Chromatin remodeling by nucleosome disassembly in vitro. Proc. Natl Acad. Sci. USA 103, 3090–3093 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X., Zaurin, R., Beato, M. & Peterson, C. L. Swi3p controls SWI/SNF assembly and ATP-dependent H2A-H2B displacement. Nat. Struct. Mol. Biol. 14, 540–547 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Rowe, C. E. & Narlikar, G. J. The ATP-dependent remodeler RSC transfers histone dimers and octamers through the rapid formation of an unstable encounter intermediate. Biochemistry 49, 9882–9890 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Cairns, B. R. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat. Struct. Mol. Biol. 14, 989–996 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeger, H., Griesenbeck, J. & Kornberg, R. D. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133, 716–726 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engeholm, M. et al. Nucleosomes can invade DNA territories occupied by their neighbors. Nat. Struct. Mol. Biol. 16, 151–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dechassa, M. L. et al. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol. Cell 38, 590–602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papamichos-Chronakis, M., Watanabe, S., Rando, O. J. & Peterson, C. L. Global regulation of H2A. Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144, 200–213 (2011). This study demonstrates nucleosome editing by the remodeller INO80C and that INO80C prevents the mislocalization of H2A.Z outside of gene promoters.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, X., Ranallo, R., Choi, E. & Wu, C. Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell 12, 147–155 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Jin, C. et al. H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat. Genet. 41, 941–945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, S., Radman-Livaja, M., Rando, O. J. & Peterson, C. L. A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 340, 195–199 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rege, M. et al. Chromatin dynamics and the RNA exosome function in concert to regulate transcriptional homeostasis. Cell Rep. 13, 1610–1622 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Roberts, D. N. & Cairns, B. R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123, 219–231 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raisner, R. M. et al. Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin. Cell 123, 233–248 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, W. H. et al. Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat. Struct. Mol. Biol. 12, 1064–1071 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Hong, J. et al. The catalytic subunit of the SWR1 remodeler is a histone chaperone for the H2A.Z-H2B dimer. Mol. Cell 53, 498–505 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luk, E. et al. Stepwise histone replacement by SWR1 requires dual activation with histone H2A. Z and canonical nucleosome. Cell 143, 725–736 (2010). This study describes the stepwise replacement of H2A with H2A.Z in nucleosomes by the remodeller SWR1C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, V. Q. et al. Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell 154, 1220–1231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosi, A. et al. Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154, 1207–1219 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, S. et al. Structural analyses of the chromatin remodelling enzymes INO80-C and SWR-C. Nat. Commun. 6, 7108 (2015). References 99–101 present the latest structures of the remodellers INO80C and SWR1C.

    Article  CAS  PubMed  Google Scholar 

  • Szerlong, H. et al. The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases. Nat. Struct. Mol. Biol. 15, 469–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L. et al. Subunit organization of the human INO80 chromatin remodeling complex: an evolutionarily conserved core complex catalyzes ATP-dependent nucleosome remodeling. J. Biol. Chem. 286, 11283–11289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Conaway, R. C. & Conaway, J. W. Multiple modes of regulation of the human Ino80 SNF2 ATPase by subunits of the INO80 chromatin-remodeling complex. Proc. Natl Acad. Sci. USA 110, 20497–20502 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, W. et al. Assembly of the Arp5 (actin-related protein) subunit involved in distinct INO80 chromatin remodeling activities. J. Biol. Chem. 290, 25700–25709 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willhoft, O., Bythell-Douglas, R., McCormack, E. A. & Wigley, D. B. Synergy and antagonism in regulation of recombinant human INO80 chromatin remodeling complex. Nucleic Acids Res. 44, 8179–8188 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suganuma, T. & Workman, J. L. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem. 80, 473–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Pollard, K. J. & Peterson, C. L. Chromatin remodeling: a marriage between two families? Bioessays 20, 771–780 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Mitra, D., Parnell, E. J., Landon, J. W., Yu, Y. & Stillman, D. J. SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment. Mol. Cell. Biol. 26, 4095–4110 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee, N. et al. Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms. Nucleic Acids Res. 39, 8378–8391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, J. J., Garlick, J. D. & Kingston, R. E. Structural basis of histone H4 recognition by p55. Genes Dev. 22, 1313–1318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flanagan, J. F. et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438, 1181–1185 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Mansfield, R. E. et al. Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9. J. Biol. Chem. 286, 11779–11791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruthenburg, A. J. et al. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145, 692–706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallant, C. et al. Molecular basis of histone tail recognition by human TIP5 PHD finger and bromodomain of the chromatin remodeling complex NoRC. Structure 23, 80–92 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippakopoulos, P. & Knapp, S. The bromodomain interaction module. FEBS Lett. 586, 2692–2704 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Peterson, C. L. Chromatin remodeling enzymes: taming the machines: third in review series on chromatin dynamics. EMBO Rep. 3, 319–322 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Rosa, H. et al. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Mol. Cell 12, 1325–1332 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Smolle, M. et al. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat. Struct. Mol. Biol. 19, 884–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims, R. J. III et al. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem. 280, 41789–41792 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Watson, A. A. et al. The PHD and chromo domains regulate the ATPase activity of the human chromatin remodeler CHD4. J. Mol. Biol. 422, 3–17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira, H., Flaus, A. & Owen-Hughes, T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J. Mol. Biol. 374, 563–579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H. S., Park, J. H., Kim, S. J., Kwon, S. J. & Kwon, J. A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J. 29, 1434–1445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett, G. & Peterson, C. L. SWI/SNF recruitment to a DNA double-strand break by the NuA4 and Gcn5 histone acetyltransferases. DNA Repair (Amst.) 30, 38–45 (2015).

    Article  CAS  Google Scholar 

  • Kim, J. H., Saraf, A., Florens, L., Washburn, M. & Workman, J. L. Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2. Genes Dev. 24, 2766–2771 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta, A. et al. Swi/Snf dynamics on stress-responsive genes is governed by competitive bromodomain interactions. Genes Dev. 28, 2314–2330 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • VanDemark, A. P. et al. Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. Mol. Cell 27, 817–828 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altaf, M. et al. NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly stimulates incorporation of H2A.Z by the SWR1 complex. J. Biol. Chem. 285, 15966–15977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman, J. A., Garlick, J. D. & Kingston, R. E. Chromatin remodeling by imitation switch (ISWI) class ATP-dependent remodelers is stimulated by histone variant H2A.Z. J. Biol. Chem. 285, 4645–4651 (2010). This work was the first to show a regulatory role for H2A.Z in nucleosome remodelling by ISWI.

    Article  CAS  PubMed  Google Scholar 

  • Corona, D. F., Clapier, C. R., Becker, P. B. & Tamkun, J. W. Modulation of ISWI function by site-specific histone acetylation. EMBO Rep. 3, 242–247 (2002). This work was the first to demonstrate that chromatin remodellers can be regulated by a histone modification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Klinker, H. et al. ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4. PLoS ONE 9, e88411 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neumann, H. et al. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol. Cell 36, 153–163 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cerbo, V. et al. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. eLife 3, e01632 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadon, A. N., Singh, B. N., Hampsey, M. & Tsukiyama, T. DNA looping facilitates targeting of a chromatin remodeling enzyme. Mol. Cell 50, 93–103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen-Hughes, T. & Workman, J. L. Remodeling the chromatin structure of a nucleosome array by transcription factor-targeted trans-displacement of histones. EMBO J. 15, 4702–4712 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez, J. L., Chandy, M., Carrozza, M. J. & Workman, J. L. Activation domains drive nucleosome eviction by SWI/SNF. EMBO J. 26, 730–740 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yudkovsky, N., Logie, C., Hahn, S. & Peterson, C. L. Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes Dev. 13, 2369–2374 (1999). References 139–141 present initial evidence that transcription activators can regulate chromatin remodelling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M. et al. Dynamic regulation of transcription factors by nucleosome remodeling. eLife 4, e06249 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  • Lake, R. J., Geyko, A., Hemashettar, G., Zhao, Y. & Fan, H. Y. UV-induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N-terminal autorepression. Mol. Cell 37, 235–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L. et al. Regulation of the Rhp26ERCC6/CSB chromatin remodeler by a novel conserved leucine latch motif. Proc. Natl Acad. Sci. USA 111, 18566–18571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning, B. J. & Peterson, C. L. Direct interactions promote eviction of the Sir3 heterochromatin protein by the SWI/SNF chromatin remodeling enzyme. Proc. Natl Acad. Sci. USA 111, 17827–17832 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kia, S. K., Gorski, M. M., Giannakopoulos, S. & Verrijzer, C. P. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF- INK4a locus. Mol. Cell. Biol. 28, 3457–3464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho, L. et al. esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nat. Cell Biol. 13, 903–913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatesh, S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Li, X. & Tyler, J. K. Nucleosome disassembly during human non-homologous end joining followed by concerted HIRA- and CAF-1-dependent reassembly. eLife 5, e15129 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Parnell, T. J., Schlichter, A., Wilson, B. G. & Cairns, B. R. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism. eLife 4, e06073 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ocampo, J., Chereji, R. V., Eriksson, P. R. & Clark, D. J. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo. Nucleic Acids Res. 44, 4625–4635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer, C., Neubert, M. & Grummt, I. The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus. EMBO Rep. 9, 774–780 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onorati, M. C. et al. The ISWI chromatin remodeler organizes the hsromega ncRNA-containing omega speckle nuclear compartments. PLoS Genet. 7, e1002096 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prensner, J. R. et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet. 45, 1392–1398 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, P. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102–106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis, P. W., Elsaesser, S. J., Noh, K. M., Stadler, S. C. & Allis, C. D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl Acad. Sci. USA 107, 14075–14080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao, Y. & Shen, X. SnapShot: chromatin remodeling complexes. Cell 129, 632 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Lessard, J. A. & Crabtree, G. R. Chromatin regulatory mechanisms in pluripotency. Annu. Rev. Cell Dev. Biol. 26, 503–532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law, M. J. et al. ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 143, 367–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Woudstra, E. C. et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415, 929–933 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Citterio, E. et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell. Biol. 20, 7643–7653 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corona, D. F. & Tamkun, J. W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 1677, 113–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Yadon, A. N. & Tsukiyama, T. SnapShot: chromatin remodeling: ISWI. Cell 144, 453–453.e1 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Grune, T. et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell 12, 449–460 (2003).

    Article  PubMed  Google Scholar 

  • Boyer, L. A., Latek, R. R. & Peterson, C. L. The SANT domain: a unique histone-tail-binding module? Nat. Rev. Mol. Cell Biol. 5, 158–163 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Dang, W. & Bartholomew, B. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol. Cell. Biol. 27, 8306–8317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vary, J. C. Jr et al. Yeast Isw1p forms two separable complexes in vivo. Mol. Cell. Biol. 23, 80–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Xiao, H. et al. Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol. Cell 8, 531–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Hochheimer, A., Zhou, S., Zheng, S., Holmes, M. C. & Tjian, R. TRF2 associates with DREF and directs promoter-selective gene expression in Drosophila. Nature 420, 439–445 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Tran, H. G., Steger, D. J., Iyer, V. R. & Johnson, A. D. The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor. EMBO J. 19, 2323–2331 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunert, N. & Brehm, A. Novel Mi-2 related ATP-dependent chromatin remodelers. Epigenetics 4, 209–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Ryan, D. P., Sundaramoorthy, R., Martin, D., Singh, V. & Owen-Hughes, T. The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J. 30, 2596–2609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denslow, S. A. & Wade, P. A. The human Mi-2/NuRD complex and gene regulation. Oncogene 26, 5433–5438 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Murawska, M. & Brehm, A. CHD chromatin remodelers and the transcription cycle. Transcription 2, 244–253 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Konev, A. Y. et al. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317, 1087–1090 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen, H. F., Wade, P. A. & Kutateladze, T. G. The NuRD architecture. Cell. Mol. Life Sci. 70, 3513–3524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohrmann, L. & Verrijzer, C. P. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim. Biophys. Acta 1681, 59–73 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kasten, M. M., Clapier, C. R. & Cairns, B. R. SnapShot: chromatin remodeling: SWI/SNF. Cell 144, 310.e1 (2011).

    Article  CAS  Google Scholar 

  • Schubert, H. L. et al. Structure of an actin-related subcomplex of the SWI/SNF chromatin remodeler. Proc. Natl Acad. Sci. USA 110, 3345–3350 (2013). This work presented the first structure of an ARP module bound to a remodeller HSA domain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison, A. J. & Shen, X. Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat. Rev. Mol. Cell Biol. 10, 373–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao, Y. & Shen, X. SnapShot: chromatin remodeling: INO80 and SWR1. Cell 144, 158–158.e2 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha, S. & Dutta, A. RVB1/RVB2: running rings around molecular biology. Mol. Cell 34, 521–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auger, A. et al. Eaf1 is the platform for NuA4 molecular assembly that evolutionarily links chromatin acetylation to ATP-dependent exchange of histone H2A variants. Mol. Cell. Biol. 28, 2257–2270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, T. et al. Crystal structure of a nuclear actin ternary complex. Proc. Natl Acad. Sci. USA 113, 8985–8990 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan, S. K. et al. EP400 deposits H3.3 into promoters and enhancers during gene activation. Mol. Cell 61, 27–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Papamichos-Chronakis, M., Krebs, J. E. & Peterson, C. L. Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev. 20, 2437–2449 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Attikum, H., Fritsch, O. & Gasser, S. M. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 26, 4113–4125 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, Y. et al. YY1 functions with INO80 to activate transcription. Nat. Struct. Mol. Biol. 14, 872–874 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Wu, S. et al. A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair. Nat. Struct. Mol. Biol. 14, 1165–1172 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W. & Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Sinha, K. K., Gross, J. D. & Narlikar, G.J. Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler. Science 355, eaaa3761 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, X., Li, M., Xia, X., Li, X. & Chen, Z. Mechanism of chromatin remodeling revealed by the Snf2−nucleosome structure. Nature 544, 440–445 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Ludwigsen, J. et al. Concerted regulation of ISWI by an autoinhibitory domain and the H4 tail N-terminal tail. eLife 6, e21477 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nodelman, I. M. et al. Interdomain communication of the Chd1 chromatin remodeler across the DNA gyres of the nucleosome. Mol. Cell 65, 447–459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar