nature.com

RNA polymerases I and III, growth control and cancer - Nature Reviews Molecular Cell Biology

  • ️White, Robert J.
  • ️Sat Jan 01 2005
  • Busch, H. & Smetana, K. in The Nucleolus. (eds Busch, H. & Smetana, K.) 448–471 (Academic Press, 1970).

    Google Scholar 

  • Derenzini, M. & Ploton, D. in Molecular Biology in Histopathology (ed. Crocker, J.) 231–249 (John Wiley & Sons Ltd, 1994).

    Google Scholar 

  • King, R. J. B. Cancer Biology. (Longman, UK, 1996).

    Google Scholar 

  • Pianese, G. Beitrag zur Histologie und Aetiologie der Carcinoma Histologische und experimentelle Untersuchungen. Beitr. Pathol. Anat. Allgem. Pathol. 142, 1–193 (1896).

    Google Scholar 

  • Narayanswami, S. & Hamkalo, B. A. High resolution mapping of Xenopus laevis 5S and ribosomal RNA genes by EM in situ hybridization. Cytometry 11, 144–152 (1990).

    CAS  PubMed  Google Scholar 

  • Jacobson, M. R. et al. Nuclear domains of the RNA subunit of RNase P. J. Cell Sci. 110, 829–837 (1997).

    CAS  PubMed  Google Scholar 

  • Bertrand, E., Houser-Scott, F., Kendall, A., Singer, R. H. & Engelke, D. R. Nucleolar localization of early tRNA processing. Genes Dev. 12, 2463–2468 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmo-Fonseca, M., Mendes-Soares, L. & Campos, I. To be or not to be in the nucleolus. Nature Cell Biol. 2, E107–E112 (2000).

    CAS  PubMed  Google Scholar 

  • Thompson, M., Haeusler, R. A., Good, P. D. & Engelke, D. R. Nucleolar clustering of dispersed tRNA genes. Science 302, 1399–1401 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Politz, J. C., Pederson, T. & Huang, S. RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol. Biol. Cell. 14, 2425–2435 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Killander, D. & Zetterberg, A. A quantitative cytochemical investigation of the relationship between cell mass and initiation of DNA synthesis in mouse fibroblasts in vitro. Exp. Cell Res. 40, 12–20 (1965).

    CAS  PubMed  Google Scholar 

  • Johnston, G. C., Pringle, J. R. & Hartwell, L. H. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 105, 79–98 (1977).

    CAS  PubMed  Google Scholar 

  • Nasmyth, K. Another role rolls in. Nature 382, 28–29 (1996).

    CAS  PubMed  Google Scholar 

  • Neufeld, T. P. & Edgar, B. A. Connections between growth and the cell cycle. Curr. Opin. Cell Biol. 10, 784–790 (1998).

    CAS  PubMed  Google Scholar 

  • Zetterberg, A. & Killander, D. Quantitative cytophotometric and autoradiographic studies on the rate of protein synthesis during interphase in mouse fibroblasts in vitro. Exp. Cell Res. 40, 1–11 (1965).

    CAS  PubMed  Google Scholar 

  • Baxter, G. C. & Stanners, C. P. The effect of protein degradation on cellular growth characteristics. J. Cell. Physiol. 96, 139–146 (1978).

    CAS  PubMed  Google Scholar 

  • Brooks, R. F. Continuous protein synthesis is required to maintain the probability of entry into S phase. Cell 12, 311–317 (1977).

    CAS  PubMed  Google Scholar 

  • Kief, D. R. & Warner, J. R. Coordinate control of syntheses of ribosomal ribonucleic acid and ribosomal proteins during nutritional shift-up in Saccharomyces cerevisiae. Mol. Cell. Biol. 1, 1007–1015 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liebhaber, S. A., Wolf, S. & Schlessinger, D. Differences in rRNA metabolism of primary and SV40-transformed human fibroblasts. Cell 13, 121–127 (1978).

    CAS  PubMed  Google Scholar 

  • Francis, M. A. & Rajbhandary, U. L. Expression and function of a human initiator tRNA gene in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 4486–4494 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandenburger, Y., Jenkins, A., Autelitano, D. J. & Hannan, R. D. Increased expression of UBF is a critical determinant for rRNA synthesis and hypertrophic growth of cardiac myocytes. FASEB J. 15, 2051–2053 (2001). Shows that the induction of UBF is essential for growth of cardiomyocytes.

    CAS  PubMed  Google Scholar 

  • Zhao, J., Yuan, X., Frodin, M. & Grummt, I. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol. Cell 11, 405–413 (2003). Reveals that proliferation can be stimulated by a constitutively activated Pol-I-specific transcription factor.

    CAS  PubMed  Google Scholar 

  • Itahana, K. et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol. Cell 12, 1151–1164 (2003).

    CAS  PubMed  Google Scholar 

  • Stefanovsky, V. Y. et al. An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol. Cell 8, 1063–1073 (2001).

    CAS  PubMed  Google Scholar 

  • Felton-Edkins, Z. A. et al. The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB. EMBO J. 22, 2422–2432 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, E. V. The role of c-myc in cellular growth control. Oncogene 18, 2988–2996 (1999).

    CAS  PubMed  Google Scholar 

  • Downward, J. Targeting Ras signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    CAS  Google Scholar 

  • Hazzalin, C. A. & Mahadevan, L. C. MAPK-regulated transcription: a continuously variable gene switch? Nature Rev. Mol. Cell Biol. 3, 30–40 (2002).

    CAS  Google Scholar 

  • Colgan, J. & Manley, J. L. TFIID can be rate limiting in vivo for TATA-containing, but not TATA-lacking, RNA polymerase II promoters. Genes Dev. 6, 304–315 (1992).

    CAS  PubMed  Google Scholar 

  • Wang, H. -D., Yuh, C. -H., Dang, C. V. & Johnson, D. L. The hepatitis B virus X protein increases the cellular level of TATA-binding protein, which mediates transactivation of RNA polymerase III genes. Mol. Cell. Biol. 15, 6720–6728 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi, A., Vilalta, A., Gopalan, S. & Johnson, D. L. TATA-binding protein is limiting for both TATA-containing and TATA-lacking RNA polymerase III promoters in Drosophila cells. Mol. Cell. Biol. 16, 6909–6916 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majello, B., Napolitano, G., De Luca, P. & Lania, L. Recruitment of human TBP selectively activates RNA polymerase II TATA-dependent promoters. J. Biol. Chem. 273, 16509–16516 (1998).

    CAS  PubMed  Google Scholar 

  • Wang, H. -D., Trivedi, A. & Johnson, D. L. Regulation of RNA polymerase I-dependent promoters by the hepatitis B virus X protein via activated Ras and TATA-binding protein. Mol. Cell. Biol. 18, 7086–7094 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, S., Zhang, C. & Johnson, D. L. Epidermal growth factor enhances cellular TATA binding protein levels and induces RNA polymerase I- and III-dependent gene activity. Mol. Cell. Biol. 24, 5119–5129 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sears, R., Leone, G., DeGregori, J. & Nevins, J. R. Ras enhances Myc protein stability. Mol. Cell 3, 169–179 (1999).

    CAS  PubMed  Google Scholar 

  • Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenwald, I. B. Upregulated expression of the genes encoding translation initiation factors eIF-4E and eIF-2α in transformed cells. Cancer Lett. 102, 113–123 (1996).

    CAS  PubMed  Google Scholar 

  • Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999). Shows the ability of Myc to promote protein synthesis and increase the size of B cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999). Genetic evidence that Myc controls cell growth and size.

    CAS  PubMed  Google Scholar 

  • Schuhmacher, M. et al. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258 (1999).

    CAS  PubMed  Google Scholar 

  • Beier, R. et al. Induction of cyclin E–cdk2 kinase activity, E2F-dependent transcription and cell growth by Myc are genetically separable events. EMBO J. 19, 5813–5823 (2000). Shows that, although E2F can induce cell-cycle progression, it does not stimulate cell growth.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Li, Q., Dang, C. V. & Lee, L. A. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc. Natl Acad. Sci. USA 97, 11198–11202 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ. 8, 1039–1048 (1997).

    CAS  PubMed  Google Scholar 

  • Coller, H. A. et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl Acad. Sci. USA 97, 3260–3265 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Q. M. et al. Identification of c-Myc responsive genes using rat cDNA microarray. Cancer Res. 60, 5922–5928 (2000).

    CAS  PubMed  Google Scholar 

  • Boon, K. et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 20, 1383–1393 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neiman, P. E. et al. Analysis of gene expression during myc oncogene-induced lymphomagenesis in the bursa of Fabricius. Proc. Natl Acad. Sci. USA 98, 6378–6383 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuhmacher, M. et al. The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res. 29, 397–406 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiio, Y. et al. Quantitative proteomic analysis of Myc oncoprotein function. EMBO J. 21, 5088–5096 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlosser, I. et al. A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res. 31, 6148–6156 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003). Shows that Pol III transcription is activated potently and directly by Myc.

    CAS  PubMed  Google Scholar 

  • Felton-Edkins, Z. A. et al. Direct regulation of RNA polymerase III transcription by RB, p53 and c-Myc. Cell Cycle 2, 181–184 (2003).

    CAS  PubMed  Google Scholar 

  • Poortinga, G. et al. MAD1 and c-Myc regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J. 23, 3325–3335 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    CAS  PubMed  Google Scholar 

  • Nesbit, C. E., Tersak, J. M. & Prochownik, E. V. MYC oncogenes and human neoplastic disease. Oncogene 18, 3004–3016 (1999).

    CAS  PubMed  Google Scholar 

  • Fingar, D. C. & Blenis, J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23, 3151–3171 (2004).

    CAS  PubMed  Google Scholar 

  • Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004).

    CAS  PubMed  Google Scholar 

  • Hall, M. N., Raff, M. & Thomas, G. Cell Growth: Control of Cell Size. (Cold Spring Harbor Laboratory Press, New York, USA, 2004).

    Google Scholar 

  • Mahajan, P. B. Modulation of transcription of rRNA genes by rapamycin. Int. J. Immunopharmacol. 16, 711–721 (1994).

    CAS  PubMed  Google Scholar 

  • Zaragoza, D., Ghavidel, A., Heitman, J. & Schultz, M. C. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol. Cell. Biol. 18, 4463–4470 (1998). Shows that transcription by Pol I and Pol III is regulated by the TOR pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powers, T. & Walter, P. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 10, 987–1000 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Claypool, J. A. et al. Tor pathway regulates Rrn3p-dependent recruitment of yeast RNA polymerase I to the promoter but does not participate in alteration of the number of active genes. Mol. Cell. Biol. 15, 946–956 (2004).

    CAS  Google Scholar 

  • Hannan, K. M. et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol. Cell. Biol. 23, 8862–8877 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • James, M. J. & Zomerdijk, J. C. B. M. Phosphatidylinositol 3-kinase and mTOR signaling pathways regulate RNA polymerase I transcription in response to IGF-1 and nutrients. J. Biol. Chem. 279, 8911–8918 (2004).

    CAS  PubMed  Google Scholar 

  • Mayer, C., Zhao, J., Yuan, X. & Grummt, I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. 18, 423–434 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt, P. K. PI3-kinase, mTOR, protein synthesis and cancer. Trends Mol. Med. 7, 482–484 (2001).

    CAS  PubMed  Google Scholar 

  • Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    CAS  Google Scholar 

  • Shamji, A., Nghiem, P. & Schreiber, S. L. Integration of growth factor and nutrient signaling: implications for cancer biology. Mol. Cell 12, 271–280 (2003).

    CAS  PubMed  Google Scholar 

  • Bjornsti, M. -A. & Houghton, P. J. The TOR pathway: a target for cancer therapy. Nature Rev. Cancer 4, 335–348 (2004).

    CAS  Google Scholar 

  • Huang, R. et al. Upstream binding factor up-regulated in hepatocellular carcinoma is related to the survival and cisplatin-sensitivity of cancer cells. FASEB J. 16, 293–301 (2002).

    PubMed  Google Scholar 

  • Winter, A. G. et al. RNA polymerase III transcription factor TFIIIC2 is overexpressed in ovarian tumours. Proc. Natl Acad. Sci. USA 97, 12619–12624 (2000). First demonstration that a Pol-III-specific transcription factor is consistently overexpressed in tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felton-Edkins, Z. A. & White, R. J. Multiple mechanisms contribute to the activation of RNA polymerase III transcription in cells transformed by papovaviruses. J. Biol. Chem. 277, 48182–48191 (2002).

    CAS  PubMed  Google Scholar 

  • Chesnokov, I., Chu, W. -M., Botchan, M. R. & Schmid, C. W. p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol. Cell. Biol. 16, 7084–7088 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns, C. A. & White, R. J. p53 is a general repressor of RNA polymerase III transcription. EMBO J. 17, 3112–3123 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budde, A. & Grummt, I. p53 represses ribosomal gene transcription. Oncogene 18, 1119–1124 (1999).

    CAS  PubMed  Google Scholar 

  • Zhai, W. & Comai, L. Repression of RNA polymerase I transcription by the tumour suppressor p53. Mol. Cell. Biol. 20, 5930–5938 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crighton, D. et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 22, 2810–2820 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto, M., Kuo, M. -L., Roussel, M. F. & Sherr, C. J. Nucleolar Arf tumour suppressor inhibits ribosomal RNA processing. Mol. Cell 11, 415–424 (2003). Shows that a primordial function of ARF is to inhibit the production of mature rRNA.

    CAS  PubMed  Google Scholar 

  • Lane, D. P. p53, guardian of the genome. Nature 358, 15–16 (1992).

    CAS  PubMed  Google Scholar 

  • Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    CAS  PubMed  Google Scholar 

  • Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).

    CAS  Google Scholar 

  • Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    CAS  PubMed  Google Scholar 

  • Hollstein, M. et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22, 3551–3555 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stein, T., Crighton, D., Warnock, L. J., Milner, J. & White, R. J. Several regions of p53 are involved in repression of RNA polymerase III transcription. Oncogene 21, 5540–5547 (2002).

    CAS  PubMed  Google Scholar 

  • Stein, T., Crighton, D., Boyle, J. M., Varley, J. M. & White, R. J. RNA polymerase III transcription can be derepressed by oncogenes or mutations that compromise p53 function in tumours and Li–Fraumeni syndrome. Oncogene 21, 2961–2970 (2002).

    CAS  PubMed  Google Scholar 

  • Varley, J. M., Evans, D. G. R. & Birch, J. M. Li–Fraumeni syndrome — a molecular and clinical review. Br. J. Cancer 76, 1–14 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Momand, J., Jung, D., Wilczynski, S. & Niland, J. The MDM2 gene amplification database. Nucleic Acids Res. 26, 3453–3459 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr, C. J. The INK4a/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol. 2, 731–737 (2001).

    CAS  Google Scholar 

  • Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103–112 (2002).

    CAS  PubMed  Google Scholar 

  • Pestov, D. G., Strezoska, Z. & Lau, L. F. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G1/S transition. Mol. Cell. Biol. 21, 4246–4255 (2001). Shows that a defect in rRNA production can trigger a potent p53-mediated cell-cycle arrest.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lapik, Y. R., Fernandes, C. J., Lau, L. F. & Pestov, D. G. Physical and functional interaction between Pes1 and Bop1 in mammalian ribosome biogenesis. Mol. Cell 15, 17–29 (2004).

    CAS  PubMed  Google Scholar 

  • Lohrum, M. A. E., Ludwig, R. L., Kubbutat, M. H. G., Hanlon, M. & Vousden, K. H. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3, 577–587 (2003).

    CAS  PubMed  Google Scholar 

  • Zhang, Y. et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol. Cell. Biol. 23, 8902–8912 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubbi, C. P. & Milner, J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 22, 6068–6077 (2003). Presents evidence that nucleolar activity is a primary determinant of p53 function.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horn, H. F. & Vousden, K. H. Guarding the guardian? Nature 427, 110–111 (2004).

    CAS  PubMed  Google Scholar 

  • Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  • Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    CAS  PubMed  Google Scholar 

  • Morris, E. J. & Dyson, N. J. Retinoblastoma protein partners. Adv. Cancer Res. 82, 1–54 (2001).

    CAS  PubMed  Google Scholar 

  • Helin, K. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8, 28–35 (1998).

    CAS  PubMed  Google Scholar 

  • Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol. 3, 11–20 (2002).

    CAS  Google Scholar 

  • Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998).

    CAS  PubMed  Google Scholar 

  • Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    CAS  PubMed  Google Scholar 

  • Grana, X., Garriga, J. & Mayol, X. Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 17, 3365–3383 (1998).

    PubMed  Google Scholar 

  • Mulligan, G. & Jacks, T. The retinoblastoma gene family: cousins with overlapping interests. Trends Genet. 14, 223–229 (1998).

    CAS  PubMed  Google Scholar 

  • Kratzke, R. A. et al. Partial inactivation of the RB product in a family with incomplete penetrance of familial retinoblastoma and benign retinal tumors. Oncogene 9, 1321–1326 (1994).

    CAS  PubMed  Google Scholar 

  • Sellers, W. R. et al. Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev. 12, 95–106 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker, L. L., Su, H., Baskaran, R., Knudsen, E. S. & Wang, J. Y. J. Growth suppression by an E2F-binding-defective retinoblastoma protein (RB): contribution from the RB C pocket. Mol. Cell. Biol. 18, 4032–4042 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanaugh, A. H. et al. Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature 374, 177–180 (1995). First demonstration that RB regulates rRNA synthesis.

    CAS  PubMed  Google Scholar 

  • White, R. J., Trouche, D., Martin, K., Jackson, S. P. & Kouzarides, T. Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 382, 88–90 (1996).

    CAS  PubMed  Google Scholar 

  • Chu, W. -M., Wang, Z., Roeder, R. G. & Schmid, C. W. RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2. J. Biol. Chem. 272, 14755–14761 (1997).

    CAS  PubMed  Google Scholar 

  • Larminie, C. G. C. et al. Mechanistic analysis of RNA polymerase III regulation by the retinoblastoma protein. EMBO J. 16, 2061–2071 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voit, R., Schafer, K. & Grummt, I. Mechanism of repression of RNA polymerase I transcription by the retinoblastoma protein. Mol. Cell. Biol. 17, 4230–4237 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pelletier, G. et al. Competitive recruitment of CBP and Rb-HDAC regulates UBF acetylation and ribosomal transcription. Mol. Cell 6, 1059–1066 (2000).

    CAS  PubMed  Google Scholar 

  • Hirsch, H. A., Jawdekar, G. W., Lee, K. -A., Gu, L. & Henry, R. W. Distinct mechanisms for repression of RNA polymerase III transcription by the retinoblastoma tumor suppressor protein. Mol. Cell. Biol. 24, 5989–5999 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutcliffe, J. E., Brown, T. R. P., Allison, S. J., Scott, P. H. & White, R. J. Retinoblastoma protein disrupts interactions required for RNA polymerase III transcription. Mol. Cell. Biol. 20, 9192–9202 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hannan, K. M. et al. Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1. Oncogene 19, 4988–4999 (2000).

    CAS  PubMed  Google Scholar 

  • Hannan, K. M. et al. RNA polymerase I transcription in confluent cells: Rb downregulates rDNA transcription during confluence-induced cell cycle arrest. Oncogene 19, 3487–3497 (2000).

    CAS  PubMed  Google Scholar 

  • Scott, P. H. et al. Regulation of RNA polymerase III transcription during cell cycle entry. J. Biol. Chem. 276, 1005–1014 (2001).

    CAS  PubMed  Google Scholar 

  • Sutcliffe, J. E. et al. RNA polymerase III transcription factor IIIB is a target for repression by pocket proteins p107 and p130. Mol. Cell. Biol. 19, 4255–4261 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciarmatori, S. et al. Overlapping functions of the pRb family in the regulation of rRNA synthesis. Mol. Cell. Biol. 21, 5806–5814 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paule, M. R. & White, R. J. Transcription by RNA polymerases I and III. Nucleic Acids Res. 28, 1283–1298 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friend, S. H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).

    CAS  PubMed  Google Scholar 

  • Harbour, J. W. Overview of RB gene mutations in patients with retinoblastoma. Ophthalmology 105, 1442–1447 (1998).

    CAS  PubMed  Google Scholar 

  • DiCiommo, D., Gallie, B. L. & Bremner, R. Retinoblastoma: the disease, gene and protein provide critical leads to understand cancer. Semin. Cancer Biol. 10, 255–269 (2000).

    CAS  PubMed  Google Scholar 

  • Hu, Q., Dyson, N. & Harlow, E. The regions of the retinoblastoma protein needed for binding to adenovirus E1A or SV40 large T antigen are common sites for mutations. EMBO J. 9, 1147–1155 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, X., Chittenden, T., Livingston, D. M. & Kaelin, W. G. Jr. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6, 953–964 (1992).

    CAS  PubMed  Google Scholar 

  • Kaye, F. J., Kratzke, R. A., Gerster, J. L. & Horowitz, J. M. A single amino acid substitution results in a retinoblastoma protein defective in phosphorylation and oncoprotein binding. Proc. Natl Acad. Sci. USA 87, 6922–6926 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, T. R. P., Scott, P. H., Stein, T., Winter, A. G. & White, R. J. RNA polymerase III transcription: its control by tumor suppressors and its deregulation by transforming agents. Gene Expr. 9, 15–28 (2000).

    CAS  PubMed  Google Scholar 

  • Helin, K. et al. Loss of the retinoblastoma protein-related p130 protein in small cell lung carcinoma. Proc. Natl Acad. Sci. USA 94, 6933–6938 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bates, S. & Peters, G. Cyclin D1 as a cellular proto-oncogene. Semin. Cancer Biol. 6, 73–82 (1995).

    CAS  PubMed  Google Scholar 

  • Rocco, J. W. & Sidransky, D. p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp. Cell. Res. 264, 42–55 (2001).

    CAS  PubMed  Google Scholar 

  • Voit, R., Hoffmann, M. & Grummt, I. Phosphorylation by G1-specific cdk–cyclin complexes activates the nucleolar transcription factor UBF. EMBO J. 18, 1891–1899 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voit, R. & Grummt, I. Phosphorylation of UBF at serine 388 is required for interaction with RNA polymerase I and activation of rDNA transcription. Proc. Natl Acad. Sci. USA 98, 13631–13636 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dyson, N., Howley, P. M., Munger, K. & Harlow, E. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937 (1989).

    CAS  PubMed  Google Scholar 

  • Munger, K. et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumour suppressor gene product. EMBO J. 8, 4099–4105 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  • zur Hausen, H. Papillomaviruses and cancer: from basic studies to clinical application. Nature Rev. Cancer 2, 342–350 (2002).

    CAS  Google Scholar 

  • Larminie, C. G. C. et al. Activation of RNA polymerase III transcription in cells transformed by simian virus 40. Mol. Cell. Biol. 19, 4927–4934 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeCaprio, J. A. et al. SV40 large tumour antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54, 275–283 (1988).

    CAS  PubMed  Google Scholar 

  • Moran, E. A region of SV40 large T antigen can substitute for a transforming domain of the adenovirus E1A products. Nature 334, 168–170 (1988).

    CAS  PubMed  Google Scholar 

  • Whyte, P. et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124–129 (1988).

    CAS  PubMed  Google Scholar 

  • Whyte, P., Williamson, N. M. & Harlow, E. Cellular targets for transformation by the adenovirus E1A proteins. Cell 56, 67–75 (1989).

    CAS  PubMed  Google Scholar 

  • Dyson, N. et al. Large T antigens of many polyomaviruses are able to form complexes with the retinoblastoma protein. J. Virol. 64, 1353–1356 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch, H. A., Gu, L. & Henry, R. W. The retinoblastoma tumor suppressor protein targets distinct general transcription factors to regulate RNA polymerase III gene expression. Mol. Cell. Biol. 20, 9182–9191 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zatsepina, O. et al. The human papillomavirus type 16 E7 protein is associated with the nucleolus in mammalian and yeast cells. Oncogene 14, 1137–1145 (1997).

    CAS  PubMed  Google Scholar 

  • Dimitrova, D. S. & Berezney, R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J. Cell Sci. 115, 4037–4051 (2002).

    CAS  PubMed  Google Scholar 

  • Grummt, I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17, 1691–1702 (2003).

    CAS  PubMed  Google Scholar 

  • Schramm, L. & Hernandez, N. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 16, 2593–2620 (2002).

    CAS  PubMed  Google Scholar