nature.com

Ubiquitin and ubiquitin-like proteins as multifunctional signals - Nature Reviews Molecular Cell Biology

  • ️Mayer, R. John
  • ️Mon Aug 01 2005
  • Mayer, R. J. The Nobel Prize for Chemistry 2004. European Biopharm. Rev. (in the press).

  • Glickman, M. H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hershko, A., Heller, H., Elias, S. & Ciechanover, A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258, 8206–8214 (1983).

    CAS  PubMed  Google Scholar 

  • Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. Embo J. 19, 94–102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson, K. D. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin. Cell Dev. Biol. 11, 141–148 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Lake, M. W., Wuebbens, M. M., Rajagopalan, K. V. & Schindelin, H. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB–MoaD complex. Nature 414, 325–329 (2001). The crystal structure of the prokaryotic MoeB–MoaD complex provides a molecular framework for understanding the activation of ubiquitin, NEDD8 and SUMO.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph, M. J., Wuebbens, M. M., Rajagopalan, K. V. & Schindelin, H. Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nature Struct. Biol. 8, 42–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Xi, J., Begley, T. P. & Nicholson, L. K. Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nature Struct. Biol. 8, 47–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Bienkowska, J. R., Hartman, H. & Smith, T. F. A search for homologs of small proteins. Ubiquitin-like proteins in prokaryotic cells? Protein Engin. 16, 897–904 (2003).

    Article  CAS  Google Scholar 

  • Lorick, K. L., Tsai, Y. -C., Yang, Y. & Weissman, A. in Protein Degradation 1st edn Vol. 1 Ch. 4 (eds Mayer, R. J., Ciechanover, A. & Rechsteiner, M.) 44–101 (Wiley-VCH, Weinheim, Germany, 2005).

    Book  Google Scholar 

  • Schwartz, D. C. & Hochstrasser, M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 28, 321–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, K. D. Roles of ubiquitinylation in proteolysis and cellular regulation. Annu. Rev. Nutr. 15, 161–189 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Peng, J. et al. A proteomic approach to understanding protein ubiquitination. Nature Biotech. 21, 921–926 (2003).

    Article  CAS  Google Scholar 

  • Prakash, S., Sung, P. & Prakash, L. DNA repair genes and proteins of Saccharomyces cerevisiae. Annu. Rev. Genet. 27, 33–70 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Hoege, C., Pfander, B., Moldevan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 12, 135–141 (2002). Modification by SUMO and ubiquitin differentially affect resistance to DNA damage, and the damage-induced ubiquitylation of PCNA is essential for DNA repair and occurs on the same conserved residue in yeast and humans.

    Article  CAS  Google Scholar 

  • Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Haracska, L., Torres-Ramos, C. A., Johnson, R. E., Prakash, S. & Prakash, L. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 4267–4274 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Z. W. & Allis, C. D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108 (2002). This work shows that the ubiquitylation of H2B regulates H3 methylation and gene silencing.

    Article  CAS  PubMed  Google Scholar 

  • Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R. III & Grant, P. A. Chd1 chromodomain links histone H3 methylation with SAGA-and SLIK-dependent acetylation. Nature 433, 434–438 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, F., Delahodde, A., Kodadek, T. & Johnston, S. A. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296, 548–550 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Gillette, T. G., Gonzalez, F., Delahodde, A., Johnston, S. A. & Kodadek, T. Physical and functional association of RNA polymerase II and the proteasome. Proc. Natl Acad. Sci. USA 101, 5904–5909 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muratani, M., Kung, C., Shokat, K. M. & Tansey, W. P. The F box protein Dsg1/Mdm30 is a transcriptional coactivator that stimulates Gal4 turnover and cotranscriptional mRNA processing. Cell 120, 887–899 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Reid, G. et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERa on responsive promoters is an integral feature of estrogen signalling. Mol. Cell 11, 695–707 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, M. S. et al. SUMO-1 modification activates the transcriptional response of p53. Embo J. 18, 6455–6461 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xirodimas, D. P., Saville, M. K., Bourdon, J. C., Hay, R. T. & Lane, D. P. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118, 83–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Meylan, E. & Tschopp, J. The RIP kinases: crucial integrators of cellular stress. Trends Biochem. Sci. 30, 151–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Sun, L. & Chen, Z. J. The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol. 16, 119–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Kanayama, A. et al. TAB2 and TAB3 activate the NF-kB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535–548 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ravid, T. & Hochstrasser, M. NF-kB signalling: flipping the switch with polyubiquitin chains. Curr. Biol. 14, R898–R900 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, K. D. Signal transduction: aspirin, ubiquitin and cancer. Nature 424, 738–739 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004). The first example of a protein that contains separate ubiquitin-ligase and deubiquitylating domains, which both participate in a single regulatory pathway.

    Article  CAS  PubMed  Google Scholar 

  • Laurin, N., Brown, J. P., Morissette, J. & Raymond, V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM/p62) in Paget disease of bone. Am. J. Hum. Genet. 70, 1582–1588 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hocking, L. J. et al. Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease. Hum. Mol. Genet. 11, 2735–2739 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Duran, A. et al. The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev. Cell 6, 303–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Cavey, J. R. et al. Loss of ubiquitin-binding associated with Paget's disease of bone p62 (SQSTM1) mutations. J. Bone Miner. Res. 20, 619–624 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol. 3, 893–905 (2002).

    Article  CAS  Google Scholar 

  • Haglund, K. et al. Multiple monoubiquitylation of RTKs is sufficient for their endocytosis and degradation. Nature Cell Biol. 5, 461–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol. Cell 1, 193–202 (1998). This paper shows that monoubiquitylation on a single lysine residue is sufficient to signal receptor internalization.

    Article  CAS  PubMed  Google Scholar 

  • Galan, J. M. & Haguenauer-Tsapis, R. Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein. Embo J. 16, 5847–5854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springael, J. Y., Galan, J. M., Haguenauer-Tsapis, R. & Andre, B. NH+4-induced down-regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine-63-linked chains. J. Cell Sci. 112, 1375–1383 (1999).

    CAS  PubMed  Google Scholar 

  • Hicke, L., Schubert, H. L. & Hill, C. P. Ubiquitin-binding domains. Nature Rev. Mol. Cell Biol. 6, 610–621 (2005).

    Article  CAS  Google Scholar 

  • Kotaja, N., Karvonen, U., Janne, O. A. & Palvimo, J. J. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell. Biol. 22, 5222–5234 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori, T. et al. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18, 6829–6834 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Cope, G. A. & Deshaies, R. J. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114, 663–671 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Gill, G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18, 2046–2059 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Tatham, M. H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Bylebyl, G. R., Belichenko, I. & Johnson, E. S. The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J. Biol. Chem. 278, 44113–44120 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Matunis, M. J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470 (1996). The first cellular target of SUMO modification is identified.

    Article  CAS  PubMed  Google Scholar 

  • Eaton, E. M. & Sealy, L. Modification of CCAAT/enhancer-binding protein-β by the small ubiquitin-like modifier (SUMO) family members, SUMO-2 and SUMO-3. J. Biol. Chem. 278, 33416–33421 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Azuma, Y., Arnaoutov, A. & Dasso, M. SUMO-2/3 regulates topoisomerase II in mitosis. J. Cell Biol. 163, 477–487 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, C. et al. The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-a/b-induced ubiquitin-like protein. Proc. Natl Acad. Sci. USA 101, 7578–7582 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D'Cunha, J. et al. In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine. J. Immunol. 157, 4100–4108 (1996).

    CAS  PubMed  Google Scholar 

  • Malakhov, M. P. et al. High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. J. Biol. Chem. 278, 16608–16613 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hamerman, J. A. et al. Serpin 2a is induced in activated macrophages and conjugates to a ubiquitin homolog. J. Immunol. 168, 2415–2423 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Raasi, S., Schmidtke, G., de Giuli, R. & Groettrup, M. A ubiquitin-like protein which is synergistically inducible by interferon-γ and tumor necrosis factor-α. Eur. J. Immunol. 29, 4030–4036 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Bates, E. E. et al. Identification and analysis of a novel member of the ubiquitin family expressed in dendritic cells and mature B cells. Eur. J. Immunol. 27, 2471–2477 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. C. et al. A MHC-encoded ubiquitin-like protein (FAT10) binds noncovalently to the spindle assembly checkpoint protein MAD2. Proc. Natl Acad. Sci. USA 96, 4313–4318 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, C. G. et al. Expression of the FAT10 gene is highly upregulated in hepatocellular carcinoma and other gastrointestinal and gynecological cancers. Oncogene 22, 2592–2603 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Raasi, S., Schmidtke, G. & Groettrup, M. The ubiquitin-like protein FAT10 forms covalent conjugates and induces apoptosis. J. Biol. Chem. 276, 35334–35343 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Hipp, M. S., Raasi, S., Groettrup, M. & Schmidtke, G. NEDD8 ultimate buster-1L interacts with the ubiquitin-like protein FAT10 and accelerates its degradation. J. Biol. Chem. 279, 16503–16510 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Kamitani, T., Kito, K., Fukuda-Kamitani, T. & Yeh, E. T. Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1. J. Biol. Chem. 276, 46655–46660 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, M., Xavier, R. M., Tsunematsu, T. & Tanigawa, Y. Molecular cloning and characterization of a cDNA encoding monoclonal nonspecific suppressor factor. Proc. Natl Acad. Sci. USA 92, 3463–3467 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata, T., Nakamura, M., Kawauchi, H. & Tanigawa, Y. Conjugation of ubiquitin-like polypeptide to intracellular acceptor proteins. Biochim. Biophys. Acta 1401, 319–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, M., Tsunematsu, T. & Tanigawa, Y. Biochemical analysis of a T cell receptor a-like molecule involved in antigen-nonspecific suppression. Biochim. Biophys. Acta 1589, 196–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, M. & Tanigawa, Y. Protein tyrosine phosphorylation induced by ubiquitin-like polypeptide in murine T helper clone type 2. Biochem. Biophys. Res. Commun. 274, 565–570 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, M. & Tanigawa, Y. Characterization of ubiquitin-like polypeptide acceptor protein, a novel pro-apoptotic member of the Bcl2 family. Eur. J. Biochem. 270, 4052–4058 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Friedman, J. S., Koop, B. F., Raymond, V. & Walter, M. A. Isolation of a ubiquitin-like (UBL5) gene from a screen identifying highly expressed and conserved iris genes. Genomics 71, 252–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  • McNally, T. et al. Structural analysis of UBL5, a novel ubiquitin-like modifier. Prot. Sci. 12, 1562–1566 (2003).

    Article  CAS  Google Scholar 

  • Ramelot, T. A. et al. Solution structure of the yeast ubiquitin-like modifier protein Hub1. J. Struct. Funct. Genomics 4, 25–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Dittmar, G. A., Wilkinson, C. R., Jedrzejewski, P. T. & Finley, D. Role of a ubiquitin-like modification in polarized morphogenesis. Science 295, 2442–2446 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Luders, J., Pyrowolakis, G. & Jentsch, S. The ubiquitin-like protein HUB1 forms SDS-resistant complexes with cellular proteins in the absence of ATP. EMBO Rep. 4, 1169–1174 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova, O. V. et al. A subset of human 35S U5 proteins, including Prp19, function prior to catalytic step 1 of splicing. EMBO J. 23, 2381–2391 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantham, L. et al. Beacon interacts with cdc2/cdc28-like kinases. Biochem. Biophys. Res. Commun. 304, 125–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, C. R. et al. Ubiquitin-like protein Hub1 is required for pre-mRNA splicing and localization of an essential splicing factor in fission yeast. Curr. Biol. 14, 2283–2288 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Collier, G. R. et al. Beacon: a novel gene involved in the regulation of energy balance. Diabetes 49, 1766–1771 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, M. W. & Porte, D. Diabetes, obesity, and the brain. Science 307, 375–379 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Furukawa, K., Mizushima, N., Noda, T. & Ohsumi, Y. A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J. Biol. Chem. 275, 7462–7465 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Goehring, A. S., Rivers, D. M. & Sprague, G. F. Attachment of the ubiquitin-related protein Urm1p to the antioxidant protein Ahp1p. Eukaryot. Cell 2, 930–936 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goehring, A. S., Rivers, D. M. & Sprague, G. F. Urmylation: a ubiquitin-like pathway that functions during invasive growth and budding in yeast. Mol. Biol. Cell 14, 4329–4341 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, T. F., Carvalho, J., Riles, L. & Zheng, X. F. A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc. Natl Acad. Sci. USA 97, 13227–13232 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler, N. S., Pan, X., Heitman, J. & Cardenas, M. E. The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol. Biol. Cell 12, 4103–4113 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky, D. J. & Emr, S. D. Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998). This paper shows that autophagy is regulated by a ubiquiton.

    Article  CAS  PubMed  Google Scholar 

  • Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Mizushima, N., Yoshimori, T. & Ohsumi, Y. Role of the Apg12 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol. 35, 553–561 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Anglade, P. et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol. 12, 25–31 (1997).

    CAS  PubMed  Google Scholar 

  • Nassar, N. et al. The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554–560 (1995). This work identifies a genetically built-in ubiquiton in a large regulatory protein.

    Article  CAS  PubMed  Google Scholar 

  • Noda, Y. et al. Molecular recognition in dimerization between PB1 domains. J. Biol. Chem. 278, 43524–43524 (2003).

    Article  CAS  Google Scholar 

  • Hirano, Y. et al. Solution structure of atypical protein kinase C PB1 domain and its mode of interaction with ZIP/p62 and MEK5. J. Biol. Chem. 279, 31883–31890 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Cavanaugh, J. E. Role of extracellular signal kinase 5 in neuronal development. Eur. J. Biochem. 271, 2056–2059 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, K. & Bucher, P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci. 21, 172–173 (1996). This study identifies a ubiquitin-binding domain using a bioinformatics approach.

    Article  CAS  PubMed  Google Scholar 

  • Bertolaet, B. L. et al. UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nature Struct. Biol. 8, 417–422 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, C. R. et al. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nature Cell Biol. 3, 939–943 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Schauber, C. et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391, 715–718 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Seeger, M. et al. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins. J. Biol. Chem. 278, 16791–16796 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Elsasser, S., Chandler-Militello, D., Muller, B., Hanna, J. & Finley, D. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 279, 26817–26822 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Verma, R., Oania, R., Graumann, J. & Deshaies, R. J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi, M., Sasaki, T., Nishimoto, T. & Kobayashi, H. Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc. Natl Acad. Sci. USA 99, 745–750 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeki, Y., Sone, T., Toh-e, A. & Yokosawa, H. Identification of ubiquitin-like protein-binding subunits of the 26S proteasome. Biochem. Biophys. Res. Commun. 296, 813–819 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Chen, L. & Madura, K. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 22, 4902–4913 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, I., Mi, K. & Rao, H. Multiple interactions of Rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell 15, 3357–3365 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richly, H. et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73–84 (2005). This paper identifies a series of protein–protein interactions that escort ubiquitin–protein conjugates to the proteasome.

    Article  CAS  PubMed  Google Scholar 

  • Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, R. M., Chen, E., Longo, D. L., Gorbea, C. M. & Li, C. C. Involvement of valosin-containing protein, an ATPase co-purified with IκBα and 26 S proteasome, in ubiquitin–proteasome-mediated degradation of IκBα. J. Biol. Chem. 273, 3562–3573 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Buchberger, A., Howard, M. J., Proctor, M. & Bycroft, M. The UBX domain: a widespread ubiquitin-like module. J. Mol. Biol. 307, 17–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Decottignies, A., Evain, A. & Ghislain, M. Binding of Cdc48p to a ubiquitin-related UBX domain from novel yeast proteins involved in intracellular proteolysis and sporulation. Yeast 21, 127–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hartmann-Petersen, R. et al. The Ubx2 and Ubx3 cofactors direct Cdc48 activity to proteolytic and nonproteolytic ubiquitin-dependent processes. Curr. Biol. 14, 824–828 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Schuberth, C., Richly, H., Rumpf, S. & Buchberger, A. Shp1 and Ubx2 are adaptors of Cdc48 involved in ubiquitin-dependent protein degradation. EMBO Rep. 5, 818–824 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corn, P. G., McDonald, E. R., Herman, J. G. & El-Deiry, W. S. Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel-Lindau protein. Nature Genet. 35, 229–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin binding proteins. Ann. Rev. Cell Dev. Biol. 19, 141–172 (2003).

    Article  CAS  Google Scholar 

  • Guarino, L. A., Smith, G. & Dong, W. Ubiquitin is attached to membranes of baculovirus particles by a novel type of phospholipid anchor. Cell 80, 301–309 (1995). This work identifies phosphatidyl–ubiquitin.

    Article  CAS  PubMed  Google Scholar 

  • Webb, J. H., Mayer, R. J. & Dixon, L. K. A lipid modified ubiquitin is packaged into particles of several enveloped viruses. FEBS Lett. 444, 136–139 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for hiv-1 budding. Cell 107, 55–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Veiga, E. & Cossart, P. Ubiquitination of intracellular bacteria: a new bacteria-sensing system? Trends Cell Biol. 15, 2–5 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Orth, K. Function of the Yersinia effector YopJ. Curr. Opin. Microbiol. 5, 38–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Tong, Y. & Buck, M. 1H, 15N and 13C resonance assignments and secondary structure determination reveal that the minimal Rac1 GTPase binding domain of plexin-B1 has a ubiquitin fold. J. Biomol. NMR 31, 369–370 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer, R. J., Landon, M. & Layfield, R. Ubiquitin superfolds: intrinsic and attachable regulators of cellular activities? Fold. Des. 3, R97–R99 (1998). These authors suggest that ubiquitin superfolds are conserved throughout evolution and can be attached to, or genetically built into, proteins.

    Article  CAS  PubMed  Google Scholar 

  • Clague, M. J. Membrane transport: a coat for ubiquitin. Curr. Biol. 12, R529–R531 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Sachse, M., Urbz, S., Ooschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pornillos, O. W. et al. HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J. Cell Biol. 162, 425–434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thien, C. B. F. & Langdon, W. Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev. Mol. Cell Biol. 2, 294–305 (2001).

    Article  CAS  Google Scholar 

  • McCullough, J., Clague, M. J. & Urbe, S. AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol. 166, 487–492 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amerik, A. Y., Nowak, J., Swaminathan, S. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol. Biol. Cell 11, 3365–3380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbé, S. in Essays in Biochemistry Vol. 41 (eds Layfield, R. & Mayer, R. J.) (Biochemical Society, London, in the press).

  • Hartmann-Petersen, R. & Gordon, C. Integral UBL domain proteins: a family of proteasome interacting proteins. Semin. Cell Dev. Biol. 15, 247–259 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Sakata, E. et al. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep. 4, 301–306 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Rev. Mol. Cell Biol. 6, 79–87 (2005).

    Article  CAS  Google Scholar