nature.com

Regulation of cardiac hypertrophy by intracellular signalling pathways - Nature Reviews Molecular Cell Biology

  • ️Molkentin, Jeffery D.
  • ️Tue Aug 01 2006
  • Kannel, W. B. Vital epidemiologic clues in heart failure. J. Clin. Epidemiol. 53, 229–235 (2000).

    CAS  PubMed  Google Scholar 

  • Hobbs, R. E. Guidelines for the diagnosis and management of heart failure. Am. J. Ther. 11, 467–472 (2004).

    PubMed  Google Scholar 

  • Levy, D. et al. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med. 347, 1397–1402 (2002).

    PubMed  Google Scholar 

  • Zannad, F. et al. Incidence, clinical and etiologic features, and outcomes of advanced chronic heart failure: the EPICAL study. Epidemiologie de l'Insuffisance Cardiaque Avancee en Lorraine. J. Am. Coll. Cardiol. 33, 734–742 (1999).

    CAS  PubMed  Google Scholar 

  • Haldeman, G. A., Croft, J. B., Giles, W. H. & Rashidee, A. Hospitalization of patients with heart failure: national hospital discharge survey, 1985 to 1995. Am. Heart J. 137, 352–360 (1999).

    CAS  PubMed  Google Scholar 

  • Malek, M. Health economics of heart failure. Heart 82 (Suppl. 4), IV11–IV13 (1999).

    PubMed  PubMed Central  Google Scholar 

  • Klein, L. et al. Pharmacologic therapy for patients with chronic heart failure and reduced systolic function: review of trials and practical considerations. Am. J. Cardiol. 91, 18F–40F (2003).

    CAS  PubMed  Google Scholar 

  • Lips, D. J., deWindt, L. J., van Kraaij, D. J. & Doevendans, P. A. Molecular determinants of myocardial hypertrophy and failure: alternative pathways for beneficial and maladaptive hypertrophy. Eur. Heart J. 24, 883–896 (2003).

    CAS  PubMed  Google Scholar 

  • Berenji, K., Drazner, M. H., Rothermel, B. A. & Hill, J. A. Does load-induced ventricular hypertrophy progress to systolic heart failure? Am. J. Physiol. Heart Circ. Physiol. 289, H8–H16 (2005).

    CAS  PubMed  Google Scholar 

  • Haider, A. W., Larson, M. G., Benjamin, E. J. & Levy, D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J. Am. Coll. Cardiol. 32, 1454–1459 (1998).

    CAS  PubMed  Google Scholar 

  • Backs, J. & Olson, E. N. Control of cardiac growth by histone acetylation/deacetylation. Circ. Res. 98, 15–24 (2006).

    CAS  PubMed  Google Scholar 

  • Dorn, G. W. 2nd & Force, T. Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Invest. 115, 527–537 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olson, E. N. & Schneider, M. D. Sizing up the heart: development redux in disease. Genes Dev. 17, 1937–1956 (2003).

    CAS  PubMed  Google Scholar 

  • Rockman, H. A., Koch, W. J. & Lefkowitz, R. J. Seven-transmembrane-spanning receptors and heart function. Nature 415, 206–212 (2002).

    CAS  PubMed  Google Scholar 

  • Wilkins, B. J. & Molkentin, J. D. Calcium–calcineurin signaling in the regulation of cardiac hypertrophy. Biochem. Biophys. Res. Commun. 322, 1178–1191 (2004).

    CAS  PubMed  Google Scholar 

  • Wu, X. et al. Local InsP(3)-dependent perinuclear Ca signaling in cardiac myocyte excitation-transcription coupling. J. Clin. Invest. 116, 675–682 (2006). A landmark study showing that a compartment-specific pool of Ca2+ near the nuclear envelope regulates CaMK activity and HDAC nuclear-cytoplasmic shuttling through Ins(1,4,5)P 3 -receptor-regulated Ca2+ release.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clerk, A. & Sugden, P. H. Activation of protein kinase cascades in the heart by hypertrophic G protein-coupled receptor agonists. Am. J. Cardiol. 83, 64H–69H (1999).

    CAS  PubMed  Google Scholar 

  • Adams, J. W. et al. Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc. Natl Acad. Sci. USA 95, 10140–10145 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • D'Angelo, D. D. et al. Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc. Natl Acad. Sci. USA 94, 8121–8126 (1997). Shows that simple overexpression of the G αq -subunit of the heterotrimeric G protein was sufficient to drive pathological cardiac hypertrophy in the mouse.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, G. et al. A transgenic mouse model of heart failure using inducible Gαq. J. Biol. Chem. 280, 40337–40346 (2005).

    CAS  PubMed  Google Scholar 

  • Mende, U. et al. Transient cardiac expression of constitutively active Gαq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc. Natl Acad. Sci. USA 95, 13893–13898 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akhter, S. A. et al. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 280, 574–577 (1998). First study showing that G αq/α11 protein function is necessary for mediating cardiac hypertrophy in an animal model of pressure-overload-induced hypertrophy.

    CAS  PubMed  Google Scholar 

  • Esposito, G. et al. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105, 85–92 (2002). Shows that inhibition of pressure-overload hypertrophy through two separate means in genetically altered mice did not lead to decompensation and heart failure, indicating that hypertrophy might not be necessary for cardiac compensation.

    CAS  PubMed  Google Scholar 

  • Wettschureck, N. et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes. Nature Med. 7, 1236–1240 (2001). Heart specific and combined disruption of the genes that encode G αq and G α11 inhibited the cardiac hypertrophic response following pressure-overload stimulation.

    CAS  PubMed  Google Scholar 

  • Rogers, J. H. et al. RGS4 causes increased mortality and reduced cardiac hypertrophy in response to pressure overload. J. Clin. Invest. 104, 567–576 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asakura, M. et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nature Med. 8, 35–40 (2002).

    CAS  PubMed  Google Scholar 

  • Gschwind, A., Zwick, E., Prenzel, N., Leserer, M. & Ullrich, A. Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene 20, 1594–1600 (2001).

    CAS  PubMed  Google Scholar 

  • Garratt, A. N., Ozcelik, C. & Birchmeier, C. ErbB2 pathways in heart and neural diseases. Trends Cardiovasc. Med. 13, 80–86 (2003).

    CAS  PubMed  Google Scholar 

  • Crone, S. A. et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Med. 8, 459–465 (2002).

    CAS  PubMed  Google Scholar 

  • Ozcelik, C. et al. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc. Natl Acad. Sci. USA 99, 8880–8885 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross, R. S. & Borg, T. K. Integrins and the myocardium. Circ. Res. 88, 1112–1119 (2001).

    CAS  PubMed  Google Scholar 

  • Brancaccio, M. et al. Melusin, a muscle-specific integrin β1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nature Med. 9, 68–75 (2003). Melusin is required for the adaptive hypertrophic response to biomechanical stimuli but not biochemical stimuli (such as G-protein-coupled receptor agonists).

    CAS  PubMed  Google Scholar 

  • Knoll, R. et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111, 943–955 (2002).

    CAS  PubMed  Google Scholar 

  • Heineke, J. et al. Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proc. Natl Acad. Sci. USA 102, 1655–60 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997).

    CAS  PubMed  Google Scholar 

  • Shai, S. Y. et al. Cardiac myocyte-specific excision of the β1 integrin gene results in myocardial fibrosis and cardiac failure. Circ. Res. 90, 458–464 (2002).

    CAS  PubMed  Google Scholar 

  • Peng, X. et al. Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J. Clin. Invest. 116, 217–227 (2006).

    CAS  PubMed  Google Scholar 

  • Zou, Y. et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nature Cell Biol. 6, 499–506 (2004).

    CAS  PubMed  Google Scholar 

  • Garrington, T. P. & Johnson, G. L. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 11, 211–218 (1999).

    CAS  PubMed  Google Scholar 

  • Sugden, P. H. & Clerk, A. 'Stress-responsive' mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ. Res. 83, 345–352 (1998).

    CAS  PubMed  Google Scholar 

  • Yamamoto, S. et al. Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. J. Clin. Invest. 111, 1463–1474 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno, O. F. et al. The MEK1–ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 19, 6341–6350 (2000). First description that MEK1–ERK1/2 signalling could induce and maintain cardiac hypertrophy in the mouse, and that the hypertrophy that was mediated by this pathway was not overtly pathologic.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanna, B., Bueno, O. F., Dai, Y. S., Wilkins, B. J. & Molkentin, J. D. Direct and indirect interactions between calcineurin–NFAT and MEK1–extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. Mol. Cell. Biol. 25, 865–878 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter, J. J., Tanaka, N., Rockman, H. A., Ross, J. Jr. & Chien, K. R. Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J. Biol. Chem. 270, 23173–23178 (1995).

    CAS  PubMed  Google Scholar 

  • Molkentin, J. D. & Dorn, G. W. 2nd. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426 (2001).

    CAS  PubMed  Google Scholar 

  • Harris, I. S. et al. Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation 110, 718–723 (2004).

    CAS  PubMed  Google Scholar 

  • Baccarini, M. Second nature: biological functions of the Raf-1 'kinase'. FEBS Lett. 579, 3271–3277 (2005).

    CAS  PubMed  Google Scholar 

  • Hindley, A. & Kolch, W. Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. J. Cell Sci. 115, 1575–1581 (2002).

    CAS  PubMed  Google Scholar 

  • Nicol, R. L. et al. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J. 20, 2757–2767 (2001). Shows that the MEK5–ERK5 pathway controls one unique aspect of cardiac growth in vivo by addition of sarcomeres in series in transgenic mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, P. et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc. Natl Acad. Sci. USA 98, 12283–12288 (2001). Shows that p38 activation in the mouse heart is cardiomyopathic and induces dilation and failure, but not hypertrophy.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, D. et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nature Med. 6, 556–563 (2000).

    CAS  PubMed  Google Scholar 

  • Petrich, B. G. et al. c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes. Circ. Res. 91, 640–647 (2002).

    CAS  PubMed  Google Scholar 

  • Petrich, B. G., Molkentin, J. D. & Wang, Y. Temporal activation of c-Jun N-terminal kinase in adult transgenic heart via cre-loxP-mediated DNA recombination. FASEB J. 17, 749–751 (2003).

    CAS  PubMed  Google Scholar 

  • Molkentin, J. D. Calcineurin–NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc. Res. 63, 467–475 (2004).

    CAS  PubMed  Google Scholar 

  • Liang, Q. et al. c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk with calcineurin–NFAT signaling. EMBO J. 22, 5079–5089 (2003). Inhibition of JNK1/JNK2 signalling in either gene-targeted mice or transgenic mice that express dominant-negative mutants induces cardiac hypertrophy by augmenting calcineurin–NFAT signalling, similar to the inhibition of p38 signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana, H. et al. JNK1 is required to preserve cardiac function in the early response to pressure overload. Biochem. Biophys. Res. Commun. 343, 1060–1066 (2006).

    CAS  PubMed  Google Scholar 

  • Kaiser, R. A. et al. Genetic inhibition or activation of JNK1/2 protects the myocardium from ischemia-reperfusion-induced cell death in vivo. J. Biol. Chem. 280, 32602–32608 (2005).

    CAS  PubMed  Google Scholar 

  • Braz, J. C. et al. Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin–NFAT signaling. J. Clin. Invest. 111, 1475–1486 (2003). Inhibition of p38 signalling in transgenic mice that express dominant-negative mutants induces and enhances cardiac hypertrophy by augmenting calcineurin–NFAT signalling, similar to the inhibition of JNK signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S. et al. The role of the Grb2–p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis. J. Clin. Invest. 111, 833–841 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida, K. et al. p38α mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload. Mol. Cell. Biol. 24, 10611–10620 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molkentin, J. D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998). Myocardial overexpression of activated calcineurin results in pronounced cardiac hypertrophy, which results in heart failure.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins, B. J. et al. Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Mol. Cell. Biol. 22, 7603–7613 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frey, N. et al. Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nature Med. 10, 1336–1343 (2004).

    CAS  PubMed  Google Scholar 

  • Frey, N., Richardson, J. A. & Olson, E. N. Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc. Natl Acad. Sci. USA 97, 14632–14637 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. H. et al. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J. Clin. Invest. 114, 1058–1071 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antos, C. L. et al. Activated glycogen synthase-3β suppresses cardiac hypertrophy in vivo. Proc. Natl Acad. Sci. USA 99, 907–912 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno, O. F., van Rooij, E., Molkentin, J. D., Doevendans, P. A. & De Windt, L. J. Calcineurin and hypertrophic heart disease: novel insights and remaining questions. Cardiovasc. Res. 53, 806–821 (2002).

    CAS  PubMed  Google Scholar 

  • De Windt, L. J. et al. Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo. Proc. Natl Acad. Sci. USA 98, 3322–3327 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, J. A. et al. Targeted inhibition of calcineurin in pressure-overload cardiac hypertrophy. Preservation of systolic function. J. Biol. Chem. 277, 10251–10255 (2002).

    CAS  PubMed  Google Scholar 

  • Rothermel, B. A. et al. Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc. Natl Acad. Sci. USA 98, 3328–3333 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanna, B. et al. Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proc. Natl Acad. Sci. USA 103, 7327–7332 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vega, R. B. et al. Dual roles of modulatory calcineurin-interacting protein 1 in cardiac hypertrophy. Proc. Natl Acad. Sci. USA 100, 669–674 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, Y. et al. Calcineurin plays a critical role in the development of pressure overload-induced cardiac hypertrophy. Circulation 104, 97–101 (2001).

    CAS  PubMed  Google Scholar 

  • Bueno, O. F. et al. Impaired cardiac hypertrophic response in calcineurin Aβ-deficient mice. Proc. Natl Acad. Sci. USA 99, 4586–4591 (2002). Mice that lack calcineurin Aβ have an impaired hypertrophic response after transverse aortic constriction, isoproterenol and angiotensin II infusion.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins, B. J. et al. Calcineurin–NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ. Res. 94, 110–118 (2004).

    CAS  PubMed  Google Scholar 

  • Bueno, O. F. et al. Calcineurin Aβ gene targeting predisposes the myocardium to acute ischemia-induced apoptosis and dysfunction. Circ. Res. 94, 91–99 (2004).

    CAS  PubMed  Google Scholar 

  • Oudit, G. Y. et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J. Mol. Cell. Cardiol. 37, 449–471 (2004).

    CAS  PubMed  Google Scholar 

  • Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    CAS  PubMed  Google Scholar 

  • Shioi, T. et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 19, 2537–2548 (2000). Overexpression of activated PI3Kα leads to a physiological form of hypertrophy without functional impairment of cardiac function up to one year.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMullen, J. R. et al. Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc. Natl Acad. Sci. USA 100, 12355–12360 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, J. et al. Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy. Mol. Cell. Biol. 25, 9491–9502 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crackower, M. A. et al. Regulation of myocardial contractility and cell size by distinct PI3K–PTEN signaling pathways. Cell 110, 737–749 (2002).

    CAS  PubMed  Google Scholar 

  • Patrucco, E. et al. PI3Kγ modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and-independent effects. Cell 118, 375–387 (2004). References 82 and 83 show differential effects of PI3Kα and PI3Kγ. PI3Kα mediates physiological hypertrophy, whereas PI3Kγ contributes to hypertrophy in response to pathological stimuli and also reduces cardiac contractility.

    CAS  PubMed  Google Scholar 

  • Chen, W. S. et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 15, 2203–2208 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F. & Birnbaum, M. J. Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem. 276, 38349–38352 (2001).

    CAS  PubMed  Google Scholar 

  • Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292, 1728–1731 (2001).

    CAS  PubMed  Google Scholar 

  • DeBosch, B. et al. Akt1 is required for physiological cardiac growth. Circulation 113, 2097–2104 (2006).

    CAS  PubMed  Google Scholar 

  • Condorelli, G. et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc. Natl Acad. Sci. USA 99, 12333–12338 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui, T. et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J. Biol. Chem. 277, 22896–22901 (2002).

    CAS  PubMed  Google Scholar 

  • Shioi, T. et al. Akt/protein kinase B promotes organ growth in transgenic mice. Mol. Cell. Biol. 22, 2799–2809 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiojima, I. et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108–2118 (2005). Shows that short-term overexpression of activated AKT in the adult myocardium induces compensated hypertrophy with coordinated myocyte and capillary growth; capillary growth was shown to be essential for myocardial growth and functional compensation.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiraishi, I. et al. Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes. Circ. Res. 94, 884–891 (2004).

    CAS  PubMed  Google Scholar 

  • Rota, M. et al. Nuclear targeting of Akt enhances ventricular function and myocyte contractility. Circ. Res. 97, 1332–1341 (2005).

    CAS  PubMed  Google Scholar 

  • Proud, C. G. Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc. Res. 63, 403–413 (2004).

    CAS  PubMed  Google Scholar 

  • Sanbe, A. et al. Reengineering inducible cardiac-specific transgenesis with an attenuated myosin heavy chain promoter. Circ. Res. 92, 609–616 (2003).

    CAS  PubMed  Google Scholar 

  • McMullen, J. R. et al. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 109, 3050–3055 (2004).

    CAS  PubMed  Google Scholar 

  • Shioi, T. et al. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107, 1664–1670 (2003).

    CAS  PubMed  Google Scholar 

  • McMullen, J. R. et al. Deletion of ribosomal S6 kinases does not attenuate pathological, physiological, or insulin-like growth factor 1 receptor-phosphoinositide 3-kinase-induced cardiac hypertrophy. Mol. Cell. Biol. 24, 6231–6240 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pende, M. et al. S6K1−/−/S6K2−/− mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol. Cell. Biol. 24, 3112–3124 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montagne, J. et al. Drosophila S6 kinase: a regulator of cell size. Science 285, 2126–2129 (1999).

    CAS  PubMed  Google Scholar 

  • Shima, H. et al. Disruption of the p70s6k/p85s6k gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 17, 6649–6659 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vega, R. B. et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol. Cell. Biol. 24, 8374–8385 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molkentin, J. D. Dichotomy of Ca in the heart: contraction versus intracellular signaling. J. Clin. Invest. 116, 623–626 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miska, E. A. et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 18, 5099–5107 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, J., McKinsey, T. A., Nicol, R. L. & Olson, E. N. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl Acad. Sci. USA 97, 4070–4075 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sparrow, D. B. et al. MEF-2 function is modified by a novel co-repressor, MITR. EMBO J. 18, 5085–5098 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C. L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002). Shows, with reference 108, that mutant mice that lack either HDAC5 or HDAC9 (both class II HDACs) have an augmented cardiac growth response to pathological stimuli (aortic constriction and calcineurin overexpression) and advanced age.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, S. et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol. Cell. Biol. 24, 8467–8476 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kee, H. J. et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113, 51–59 (2006). Shows that pharmacological inhibition of HDACs reduces cardiac hypertrophy in mice and rats that is induced by various pathological stimuli. HDAC inhibition also blunted pre-existing myocardial hypertrophy and reduced mortality after transverse aortic constriction.

    CAS  PubMed  Google Scholar 

  • Kong, Y. et al. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 113, 2579–2588 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mei, S., Ho, A. D. & Mahlknecht, U. Role of histone deacetylase inhibitors in the treatment of cancer (Review). Int. J. Oncol. 25, 1509–1519 (2004).

    CAS  PubMed  Google Scholar 

  • Sano, M. & Schneider, M. D. Cyclin-dependent kinase-9: an RNAPII kinase at the nexus of cardiac growth and death cascades. Circ. Res. 95, 867–876 (2004).

    CAS  PubMed  Google Scholar 

  • Sano, M. et al. Activation and function of cyclin T-Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Nature Med. 8, 1310–1317 (2002). Novel paradigm for the regulation of heart growth through the activation of CDK7 and CDK9 to facilitate RNA polymerase II transcription elongation, and the augmentation of hypertrophic gene expression.

    CAS  PubMed  Google Scholar 

  • Passier, R. et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J. Clin. Invest. 105, 1395–1406 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, R. et al. Calmodulin kinase II inhibition protects against structural heart disease. Nature Med. 11, 409–417 (2005).

    CAS  PubMed  Google Scholar 

  • Zhang, T. et al. The δC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ. Res. 92, 912–919 (2003).

    CAS  PubMed  Google Scholar 

  • Haq, S. et al. Deletion of cytosolic phospholipase A2 promotes striated muscle growth. Nature Med. 9, 944–951 (2003).

    CAS  PubMed  Google Scholar 

  • Takimoto, E. et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nature Med. 11, 214–222 (2005). Blockade of catabolism of cGMP with the oral phosphodiesterase-5A (PDE5A) inhibitor sildenafil (Viagra) suppresses cardiac hypertrophy and improves heart function in mice that were exposed to aortic banding.

    CAS  PubMed  Google Scholar 

  • Wollert, K. C. et al. Gene transfer of cGMP-dependent protein kinase I enhances the antihypertrophic effects of nitric oxide in cardiomyocytes. Hypertension 39, 87–92 (2002).

    CAS  PubMed  Google Scholar 

  • Fiedler, B. et al. Inhibition of calcineurin–NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc. Natl Acad. Sci. USA 99, 11363–11368 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deschamps, A. M. & Spinale, F. G. Pathways of matrix metalloproteinase induction in heart failure: bioactive molecules and transcriptional regulation. Cardiovasc. Res. 69, 666–676 (2006).

    CAS  PubMed  Google Scholar 

  • Kang, P. M. & Izumo, S. Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends Mol. Med. 9, 177–182 (2003).

    CAS  PubMed  Google Scholar 

  • Dickhuth, H. H., Rocker, K., Mayer, F., Konig, D. & Korsten-Reck, U. Endurance training and cardial adaptation (athlete's heart). Herz 29, 373–380 (2004).

    PubMed  Google Scholar 

  • Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  • de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S. & van Kuilenburg, A. B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737–749 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verdin, E., Dequiedt, F. & Kasler, H. G. Class II histone deacetylases: versatile regulators. Trends Genet. 19, 286–293 (2003).

    CAS  PubMed  Google Scholar 

  • Molkentin, J. D. The zinc finger-containing transcription factors GATA-4, -5, and-6. Ubiquitously expressed regulators of tissue-specific gene expression. J. Biol. Chem. 275, 38949–38952 (2000).

    CAS  PubMed  Google Scholar 

  • Peterkin, T., Gibson, A., Loose, M. & Patient, R. The roles of GATA-4, -5 and-6 in vertebrate heart development. Semin. Cell Dev. Biol. 16, 83–94 (2005).

    CAS  PubMed  Google Scholar 

  • Akazawa, H. & Komuro, I. Roles of cardiac transcription factors in cardiac hypertrophy. Circ. Res. 92, 1079–1088 (2003).

    CAS  PubMed  Google Scholar 

  • Liang, Q. & Molkentin, J. D. Divergent signaling pathways converge on GATA4 to regulate cardiac hypertrophic gene expression. J. Mol. Cell. Cardiol. 34, 611–616 (2002).

    CAS  PubMed  Google Scholar 

  • Liang, Q. et al. The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J. Biol. Chem. 276, 30245–30253 (2001).

    CAS  PubMed  Google Scholar 

  • Oka, T. et al. Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ. Res. 98, 837–845 (2006). Cardiac-specific deletion of Gata4 results in a progressive deterioration in cardiac function and dilation in adulthood. Also shows that GATA4 is important for the preservation of cardiac function in response to pressure overload of the heart.

    CAS  PubMed  Google Scholar 

  • Karin, M. The beginning of the end: IκB kinase (IKK) and NF-κB activation. J. Biol. Chem. 274, 27339–27342 (1999).

    CAS  PubMed  Google Scholar 

  • Kawano, S. et al. Blockade of NF-κB ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin II. Cardiovasc. Res. 67, 689–698 (2005).

    CAS  PubMed  Google Scholar 

  • Freund, C. et al. Requirement of nuclear factor-κB in angiotensin II- and isoproterenol-induced cardiac hypertrophy in vivo. Circulation 111, 2319–2325 (2005).

    CAS  PubMed  Google Scholar 

  • Li, Y. et al. NF-κB activation is required for the development of cardiac hypertrophy in vivo. Am. J. Physiol. Heart Circ. Physiol. 287, H1712–H1720 (2004).

    CAS  PubMed  Google Scholar 

  • Czubryt, M. P. & Olson, E. N. Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog. Horm. Res. 59, 105–124 (2004).

    CAS  PubMed  Google Scholar 

  • Han, J. & Molkentin, J. D. Regulation of MEF2 by p38 MAPK and its implication in cardiomyocyte biology. Trends Cardiovasc. Med. 10, 19–22 (2000).

    CAS  PubMed  Google Scholar 

  • Xu, J. et al. Myocyte enhancer factors 2A and 2C induce dilated cardiomyopathy in transgenic mice. J. Biol. Chem. 281, 9152–9162 (2006).

    CAS  PubMed  Google Scholar 

  • Zhang, X. et al. Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. Am. J. Physiol. Heart Circ. Physiol. 280, H1782–H1792 (2001).

    CAS  PubMed  Google Scholar 

  • Parlakian, A. et al. Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart. Circulation 112, 2930–2939 (2005).

    CAS  PubMed  Google Scholar 

  • Buitrago, M. et al. The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nature Med. 11, 837–844 (2005).

    CAS  PubMed  Google Scholar 

  • Song, K. et al. The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases. Cell 124, 435–466 (2006).

    Google Scholar