nature.com

Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide - Nature Reviews Molecular Cell Biology

  • ️Selkoe, Dennis J.
  • ️Thu Feb 01 2007
  • Gasser, T. Genetics of Parkinson's disease. Curr. Opin. Neurol. 18, 363–369 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Kahle, P. J., Haass, C., Kretzschmar, H. A. & Neumann, M. Structure/function of α-synuclein in health and disease: rational development of animal models for Parkinson's and related diseases. J. Neurochem. 82, 449–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Baba, M. et al. Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am. J. Pathol. 152, 879–884 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen, D. R. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364, 362 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Deng, H. X. et al. Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261, 1047–1051 (1993).

    Article  CAS  PubMed  Google Scholar 

  • A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72, 971–983 (1993).

  • Alzheimer, A. Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatrie Psychisch-Gerichtl. Med. 64, 146–148 (1907).

    Google Scholar 

  • Glenner, G. G. & Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci. USA 82, 4245–4249 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundke-Iqbal, I. et al. Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA 83, 4913–4917 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosik, K. S., Joachim, C. L. & Selkoe, D. J. Microtubule-associated protein τ (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl Acad. Sci. USA 83, 4044–4048 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nukina, N. & Ihara, Y. One of the antigenic determinants of paired helical filaments is related to τ protein. J. Biochem. 99, 1541–1544 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Glenner, G. G. & Wong, C. W. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122, 1131–1135 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Olson, M. I. & Shaw, C. M. Presenile dementia and Alzheimer's disease in mongolism. Brain 92, 147–156 (1969).

    Article  CAS  PubMed  Google Scholar 

  • Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Levy, E. et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248, 1124–1126 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Chartier-Harlin, M. C. et al. Early-onset Alzheimer's disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 353, 844–846 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Mullan, M. et al. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of β-amyloid. Nature Genet. 1, 345–347 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Selkoe, D. J. The molecular pathology of Alzheimer's disease. Neuron 6, 487–498 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Hardy, J. A. & Higgins, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992). References 22 and 23 set out the amyloid cascade hypothesis, for which strong experimental evidence is now accumulating.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Seubert, P. et al. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature 359, 325–327 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Shoji, M. et al. Production of the Alzheimer amyloid β-protein by normal proteolytic processing. Science 258, 126–129 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Busciglio, J., Gabuzda, D. H., Matsudaira, P. & Yankner, B. A. Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc. Natl Acad. Sci. USA 90, 2092–2096 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haass, C. Take five-BACE and the γ-secretase quartet conduct Alzheimer's amyloid β-peptide generation. EMBO J. 23, 483–488 (2004). A review on APP processing by β- and γ-secretase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Weihofen, A. & Martoglio, B. Intramembrane-cleaving proteases: controlled liberation of functional proteins and peptides from membranes. Trends Cell Biol. 13, 71–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Mumm, J. S. & Kopan, R. Notch signaling: from the outside in. Dev. Biol. 228, 151–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Steiner, H. et al. Glycine 384 is required for presenilin-1 function and is conserved in polytopic bacterial aspartyl proteases. Nature Cell Biol. 2, 848–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kimberly, W. T. et al. γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc. Natl Acad. Sci. USA 100, 6382–6387 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasugi, N. et al. The role of presenilin cofactors in the γ-secretase complex. Nature 422, 438–441 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Edbauer, D. et al. Reconstitution of γ-secretase activity. Nature Cell Biol. 5, 486–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Sastre, M. et al. Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2, 835–841 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidemann, A. et al. A novel ε-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing. Biochemistry 41, 2825–2835 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Gu, Y. et al. Distinct intramembrane cleavage of the β-amyloid precursor protein family resembling γ-secretase-like cleavage of Notch. J. Biol. Chem. 276, 35235–35238 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Qi-Takahara, Y. et al. Longer forms of amyloid β protein: implications for the mechanism of intramembrane cleavage by γ-secretase. J. Neurosci. 25, 436–445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, G. et al. γ-cleavage is dependent on ζ-cleavage during the proteolytic processing of amyloid precursor protein within its transmembrane domain. J. Biol. Chem. 280, 37689–37697 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Dickson, D. W. The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol. 56, 321–339 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Naslund, J. et al. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA 283, 1571–1577 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Lue, L. F. et al. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am. J. Pathol. 155, 853–862 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean, C. A. et al. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol. 46, 860–866 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Dickson, D. W., Trojanowski, J. Q. & Lee, V. M. The levels of soluble versus insoluble brain Aβ distinguish Alzheimer's disease from normal and pathologic aging. Exp. Neurol. 158, 328–337 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004). Evidence that small, diffusible aggregates of intracellular huntingtin can confer neurotoxicity, perhaps analogously to soluble Aβ oligomers.

    Article  CAS  PubMed  Google Scholar 

  • Schaffar, G. et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15, 95–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Cummings, C. J. et al. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24, 879–892 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Tsai, J., Grutzendler, J., Duff, K. & Gan, W. B. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature Neurosci. 7, 1181–1183 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Teplow, D. B. Structural and kinetic features of amyloid β-protein fibrillogenesis. Amyloid 5, 121–142 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Harper, J. D., Wong, S. S., Lieber, C. M. & Lansbury, P. T. Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Hartley, D. M. et al. Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 8876–8884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M. & Teplow, D. B. Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem. 272, 22364–22372 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Walsh, D. M. et al. Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274, 25945–25952 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Bitan, G. et al. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc. Natl Acad. Sci. USA 100, 330–335 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T. & Lansbury, P. T. Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418, 291 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lambert, M. P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA 95, 6448–6453 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, Y. et al. Alzheimer's disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl Acad. Sci. USA 100, 10417–10422 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006). Identification of a brain-derived Aβ oligomeric assembly, which impairs memory.

    Article  CAS  PubMed  Google Scholar 

  • Podlisny, M. B. et al. Aggregation of secreted amyloid β-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J. Biol. Chem. 270, 9564–9570 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Walsh, D. M., Tseng, B. P., Rydel, R. E., Podlisny, M. B. & Selkoe, D. J. The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry 39, 10831–10839 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Funato, H., Enya, M., Yoshimura, M., Morishima-Kawashima, M. & Ihara, Y. Presence of sodium dodecyl sulfate-stable amyloid β-protein dimers in the hippocampus CA1 not exhibiting neurofibrillary tangle formation. Am. J. Pathol. 155, 23–28 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enya, M. et al. Appearance of sodium dodecyl sulfate-stable amyloid β-protein (Aβ) dimer in the cortex during aging. Am. J. Pathol. 154, 271–279 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawarabayashi, T. et al. Dimeric amyloid β protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated τ accumulation in the Tg2576 mouse model of Alzheimer's disease. J. Neurosci. 24, 3801–3809 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roher, A. E. et al. Morphology and toxicity of Aβ-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer's disease. J. Biol. Chem. 271, 20631–20635 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002). Defines a synaptotoxic function for small, soluble oligomers of secreted Aβ in vivo.

    Article  CAS  PubMed  Google Scholar 

  • Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003). Demonstrates the effects of Aβ on synaptic function upon the stimulation of neuronal activity.

    Article  CAS  PubMed  Google Scholar 

  • Townsend, M., Shankar, G. M., Mehta, T., Walsh, D. M. & Selkoe, D. J. Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol. 572, 477–492 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klyubin, I. et al. Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo. Nature Med. 11, 556–561 (2005). LTP inhibition by soluble oligomers of human Aβ is prevented by active and passive Aβ immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  • Cleary, J. P. et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nature Neurosci. 8, 79–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Cirrito, J. R. et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 48, 913–922 (2005). An in vivo demonstration of the effects of synaptic activity on Aβ levels.

    Article  CAS  PubMed  Google Scholar 

  • Snyder, E. M. et al. Regulation of NMDA receptor trafficking by amyloid-β. Nature Neurosci. 8, 1051–1058 (2005). A cellular mechanism that describes how Aβ lowers NMDA-evoked currents.

    Article  CAS  PubMed  Google Scholar 

  • Gong, B. et al. Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell 126, 775–788 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Glabe, C. G. & Kayed, R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66, S74–S78 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003). Describes common conformational epitopes on oligomers of completely distinct amyloidogenic proteins.

    Article  CAS  PubMed  Google Scholar 

  • Lashuel, H. A. et al. α-Synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322, 1089–1102 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Conway, K. A., Harper, J. D. & Lansbury, P. T. Jr. Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 39, 2552–2563 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Conway, K. A., Harper, J. D. & Lansbury, P. T. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nature Med. 4, 1318–1320 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Conway, K. A. et al. Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA 97, 571–576 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchut, A. J. & Hall, C. K. Spontaneous formation of annular structures observed in molecular dynamics simulations of polyglutamine peptides. Comput. Biol. Chem. 30, 215–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan, R., Marchant, R. E. & Zagorski, M. G. ABri peptide associated with familial British dementia forms annular and ring-like protofibrillar structures. Amyloid 11, 10–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wille, H., Drewes, G., Biernat, J., Mandelkow, E. M. & Mandelkow, E. Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein τ in vitro. J. Cell. Biol. 118, 573–584 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Friedhoff, P., von Bergen, M., Mandelkow, E. M., Davies, P. & Mandelkow, E. A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc. Natl Acad. Sci. USA 95, 15712–15717 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Willem, M. et al. Control of peripheral nerve myelination by the β-secretase BACE1. Science 314, 664–666 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999). Initial report of the beneficial effects of Aβ immunotherapy in a transgenic mouse model of AD.

    Article  CAS  PubMed  Google Scholar 

  • Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med. 6, 916–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Orgogozo, J. M. et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61, 46–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hock, C. et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer's disease. Neuron 38, 547–554 (2003). First report of the beneficial effects of Aβ immunotherapy in a small cohort of vaccinated patients with AD.

    Article  CAS  PubMed  Google Scholar 

  • Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553–1562 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Nicoll, J. A. et al. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nature Med. 9, 448–452 (2003). First report of the apparent removal of Aβ deposits in humans by a therapeutic agent.

    Article  CAS  PubMed  Google Scholar 

  • Patton, R. L. et al. Amyloid-β peptide remnants in AN-1792-immunized Alzheimer's disease patients: a biochemical analysis. Am. J. Pathol. 169, 1048–1063 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oddo, S., Billings, L., Kesslak, J. P., Cribbs, D. H. & LaFerla, F. M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated τ aggregates via the proteasome. Neuron 43, 321–332 (2004). Further evidence of a linear connection between Aβ deposition and tau hyperphosphorylation in an animal model.

    Article  CAS  PubMed  Google Scholar 

  • DeMattos, R. B., Bales, K. R., Cummins, D. J., Paul, S. M. & Holtzman, D. M. Brain to plasma amyloid-β efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science 295, 2264–2267 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Dodart, J. C. et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nature Neurosci. 5, 452–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Janus, C. et al. A β peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408, 979–982 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Gelinas, D. S., DaSilva, K., Fenili, D., St George-Hyslop, P. & McLaurin, J. Immunotherapy for Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 14657–14662 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe, D. J. & Schenk, D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol. 43, 545–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  • McLaurin, J. et al. Therapeutically effective antibodies against amyloid-β peptide target amyloid-β residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nature Med. 8, 1263–1269 (2002). Important mechanistic insights about how Aβ immunotherapy can prevent oligomerization and cytotoxicity.

    Article  CAS  PubMed  Google Scholar 

  • Solomon, B., Koppel, R., Hanan, E. & Katzav, T. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer β-amyloid peptide. Proc. Natl Acad. Sci. USA 93, 452–455 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, W. Q. et al. Insulin-degrading enzyme regulates extracellular levels of amyloid β- protein by degradation. J. Biol. Chem. 273, 32730–32738 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Tucker, H. M. et al. The plasmin system is induced by and degrades amyloid-β aggregates. J. Neurosci. 20, 3937–3946 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller-Steiner, S. et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron 51, 703–714 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Iwata, N. et al. Identification of the major Aβ1–42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nature Med. 6, 143–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Leissring, M. A. et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40, 1087–1093 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Huang, S. M. et al. Neprilysin-sensitive synapse-associated Aβ oligomers impair neuronal plasticity and cognitive function. J. Biol. Chem. 281, 17941–17951 (2006).

    Article  CAS  PubMed  Google Scholar 

  • McLaurin, J., Franklin, T., Zhang, X., Deng, J. & Fraser, P. E. Interactions of Alzheimer amyloid-β peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur. J. Biochem. 266, 1101–1110 (1999).

    Article  CAS  PubMed  Google Scholar 

  • McLaurin, J., Golomb, R., Jurewicz, A., Antel, J. P. & Fraser, P. E. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid β peptide and inhibit aβ-induced toxicity. J. Biol. Chem. 275, 18495–18502 (2000).

    Article  CAS  PubMed  Google Scholar 

  • McLaurin, J. et al. Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nature Med. 12, 801–808 (2006). New Aβ-aggregation inhibitors show beneficial effects on plaque burden and behaviour in mice.

    Article  CAS  PubMed  Google Scholar 

  • Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001). Discovery of certain NSAIDs as γ-secretase modulators: they lead to shorter, less amyloidogenic Aβ species.

    Article  CAS  PubMed  Google Scholar 

  • Doerfler, P., Shearman, M. S. & Perlmutter, R. M. Presenilin-dependent γ-secretase activity modulates thymocyte development. Proc. Natl Acad. Sci. USA 98, 9312–9317 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geling, A., Steiner, H., Willem, M., Bally-Cuif, L. & Haass, C. A γ-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 3, 688–694 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med. 2, 864–870 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, N. et al. An increased percentage of long amyloid β-protein secreted by familial amyloid β-protein precursor (βAPP717) mutants. Science 264, 1336–1340 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Burdick, D. et al. Assembly and aggregation properties of synthetic Alzheimer's A4/β amyloid peptide analogs. J. Biol. Chem. 267, 546–554 (1992).

    CAS  PubMed  Google Scholar 

  • Jarrett, J. T., Berger, E. P. & Lansbury, P. T. Jr. The carboxy terminus of the β-amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693–4697 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y. R. & Glabe, C. G. Distinct early folding and aggregation properties of Alzheimer amyloid-β peptides Aβ40 and Aβ42: stable trimer or tetramer formation by Aβ42. J. Biol. Chem. 281, 24414–24422 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Nilsberth, C. et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nature Neurosci. 4, 887–893 (2001). A genetic explanation for the development of rare forms of AD that is strongly supportive of the amyloid hypothesis.

    Article  CAS  PubMed  Google Scholar 

  • Iwatsubo, T. et al. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific A β monoclonals: evidence that an initially deposited species is Aβ42(43). Neuron 13, 45–53 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Cai, X. D., Golde, T. E. & Younkin, S. G. Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259, 514–516 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Citron, M. et al. Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production. Nature 360, 672–674 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genet. 38, 24–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  • McGowan, E. et al. Aβ42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47, 191–199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentahir, M. et al. Presenilin clinical mutations can affect γ-secretase activity by different mechanisms. J. Neurochem. 96, 732–742 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Deng, Y. et al. Deletion of presenilin 1 hydrophilic loop sequence leads to impaired γ-secretase activity and exacerbated amyloid pathology. J. Neurosci. 26, 3845–3854 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar