nature.com

The promise of human induced pluripotent stem cells for research and therapy - Nature Reviews Molecular Cell Biology

  • ️Nierras, Concepcion R.
  • ️Wed Aug 13 2008
  • Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  • Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 14 Feb 2008 (doi:10.1126/science.1154884)

  • Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  Google Scholar 

  • Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  • Yu, J. et al. Induced pluripotent stem cells from adult human somatic cells. Science 318, 1917–1920 (2007).

    CAS  Google Scholar 

  • Park, I.-H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–147 (2008).

    Article  CAS  Google Scholar 

  • Lowry, W. E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl Acad. Sci. USA 105, 2883–2888 (2008).

    Article  CAS  Google Scholar 

  • Blelloch, R. et al. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1, 245–247 (2007).

    Article  CAS  Google Scholar 

  • Takahashi, K., Okita, K., Nakagawa, M. & Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nature Protoc. 2, 3081–3089 (2007).

    Article  CAS  Google Scholar 

  • Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1, 39–49 (2007).

    Article  CAS  Google Scholar 

  • Cibelli, J. Development: is therapeutic cloning dead? Science 318, 1879–1880 (2007).

    Article  CAS  Google Scholar 

  • Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).

    Article  CAS  Google Scholar 

  • Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  • Cowan, C. A., Atienza, J., Melton, D. A. & Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373 (2005).

    Article  CAS  Google Scholar 

  • Do, J. T., Han, D. W. & Scholer, H. R. Reprogramming somatic gene activity by fusion with pluripotent cells. Stem Cell Rev. 2, 257–264 (2006).

    Article  CAS  Google Scholar 

  • Hochedlinger, K. & Jaenisch, R. Nuclear reprogramming and pluripotency. Nature 441, 1061–1067 (2006).

    Article  CAS  Google Scholar 

  • Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  Google Scholar 

  • Lerou, P. H. & Daley, G. Q. Therapeutic potential of embryonic stem cells. Blood Rev. 19, 321–331 (2005).

    Article  Google Scholar 

  • Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    Article  CAS  Google Scholar 

  • Maherali, N. et al. Directly reprogrammed fibroblasts show epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  Google Scholar 

  • Hanna, J. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920–1923 (2007).

    Article  CAS  Google Scholar 

  • The International Stem Cell Initiative. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotech. 25, 803–816 (2007).

    Article  Google Scholar 

  • Gottweis, H. & Minger, S. iPS cells and the politics of promise. Nature Biotech. 26, 271–272 (2008).

    Article  CAS  Google Scholar 

  • Cyranoski, D. Five things to know before jumping on the iPS bandwagon. Nature 452, 406–408 (2008).

    Article  CAS  Google Scholar 

  • Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotech. 26, 101–106 (2008).

    Article  CAS  Google Scholar 

  • Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotech. 26, 313–315 (2008).

    Article  CAS  Google Scholar 

  • US Department of Health and Human Services. Guidance for human somatic cell therapy and gene therapy. Food and Drug Administration [online] (1998).

  • Segers, V. F. M. & Lee, R. T. Stem cell therapy for cardiac disease. Nature 451, 937–942 (2008).

    Article  CAS  Google Scholar 

  • Rajasekhar, V. K. & Begemann, M. Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 25, 2498–2510 (2007).

    Article  CAS  Google Scholar 

  • Spivakov, M. & Fisher, A. G. Epigenetic signatures of stem-cell identity. Nature Rev. Genetics 8, 263–271 (2007).

    Article  CAS  Google Scholar 

  • Holden, C. & Vogel, G. A seismic shift for stem cell research. Science 319, 560–563 (2008).

    Article  CAS  Google Scholar 

  • Walker, F. O. Huntington's disease. Lancet 369, 218–228 (2007).

    Article  CAS  Google Scholar 

  • Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264 (2008).

    Article  CAS  Google Scholar 

  • National Cancer Institute. Cancer biomedical informatics grid. National Cancer Institute [online] (2008).

  • Blelloch, R. H. et al. Nuclear cloning of embryonal carcinoma cells. Proc. Natl Acad. Sci. USA 101, 13985–13990 (2004).

    CAS  PubMed  Google Scholar 

  • Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nature Rev. Genetics 8, 286–298 (2007).

    Article  CAS  Google Scholar 

  • Hochedlinger, K. et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 18, 1875–1885 (2004).

    Article  CAS  Google Scholar 

  • Huebert, D. J. Kamal, M., O'Donovan, A. & Bernstein, B. E. Genome-wide analysis of histone modifications by ChIP-on-chip. Methods 40, 365–369 (2006).

    Article  CAS  Google Scholar 

  • Robertson, G. et al. Genome-wide profiling of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 4, 651–657 (2007).

    Article  CAS  Google Scholar 

  • Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nature Rev. Immunol. 7, 118–130 (2007).

    Article  CAS  Google Scholar 

  • Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 31 July 2008 (doi:10.1126/science.1158799)

  • Park, I. -H et al. Disease-specific induced pluripotent stem cells. Cell (in the press).

  • Kim, J. B. et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646–650 (2008).

    Article  CAS  Google Scholar