nature.com

Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways - Nature Reviews Molecular Cell Biology

  • ️Wade Harper, J.
  • ️Wed Apr 08 2009
  • Ciechanover, A. Intracellular protein degradation: from a vague idea, through the lysosome and the ubiquitin–proteasome system, and onto human diseases and drug targeting (Nobel lecture). Angew. Chem. Int. Edn Engl. 44, 5944–5967 (2005).

    Article  CAS  Google Scholar 

  • Goldberg, A. L. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans. 35, 12–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hershko, A., Heller, H., Elias, S. & Ciechanover, A. Components of ubiquitin–protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258, 8206–8214 (1983). Describes the chromatographic separation of E1, E2 and E3 activities and demonstrates reconstitution of the first ubiquitin ligase reaction.

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser, M. Lingering mysteries of ubiquitin-chain assembly. Cell 124, 27–34 (2006).

    Article  PubMed  Google Scholar 

  • Pickart, C. M. & Fushman, D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hicke, L., Schubert, H. L. & Hill, C. P. Ubiquitin-binding domains. Nature Rev. Mol. Cell Biol. 6, 610–621 (2005).

    Article  CAS  Google Scholar 

  • Hochstrasser, M. Ubiquitin signalling: what's in a chain? Nature Cell Biol. 6, 571–572 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hurley, J. H., Lee, S. & Prag, G. Ubiquitin-binding domains. Biochem. J. 399, 361–372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper, J. W. & Schulman, B. A. Structural complexity in ubiquitin recognition. Cell 124, 1133–1136 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Rev. Mol. Cell Biol. 6, 79–87 (2005).

    Article  CAS  Google Scholar 

  • Hershko, A. The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture). Angew. Chem. Int. Edn Engl. 44, 5932–5943 (2005).

    Article  CAS  Google Scholar 

  • Hochstrasser, M. Biochemistry. All in the ubiquitin family. Science 289, 563–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser, M. Evolution and function of ubiquitin-like protein-conjugation systems. Nature Cell Biol. 2, E153–E157 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Pickart, C. M. & Eddins, M. J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Varshavsky, A. Regulated protein degradation. Trends Biochem. Sci. 30, 283–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Hershko, A., Ciechanover, A. & Varshavsky, A. The ubiquitin system. Nature Med. 6, 1073–1081 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Yeh, E. T., Gong, L. & Kamitani, T. Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Pan, Z. Q., Kentsis, A., Dias, D. C., Yamoah, K. & Wu, K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23, 1985–1997 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Yamoah, K. et al. Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1's C-terminal tail. Proc. Natl Acad. Sci. USA 105, 12230–12235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duda, D. M. et al. Structural insights into NEDD8 activation of cullin–RING ligases: conformational control of conjugation. Cell 134, 995–1006 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha, A. & Deshaies, R. J. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32, 21–31 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nature Rev. Mol. Cell Biol. 8, 947–956 (2007).

    Article  CAS  Google Scholar 

  • Wang, C., Xi, J., Begley, T. P. & Nicholson, L. K. Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nature Struct. Biol. 8, 47–51 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Lake, M. W., Wuebbens, M. M., Rajagopalan, K. V. & Schindelin, H. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB–MoaD complex. Nature 414, 325–329 (2001). Describes the structure of the MoeB–MoaD complex and reveals the mechanism of MoaD adenylation. This is the only structure to date of an E1-like enzyme with an adenylate.

    Google Scholar 

  • Taylor, S. V. et al. Thiamin biosynthesis in Escherichia coli. Identification of this thiocarboxylate as the immediate sulfur donor in the thiazole formation. J. Biol. Chem. 273, 16555–16560 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Leimkuhler, S., Wuebbens, M. M. & Rajagopalan, K. V. Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor. J. Biol. Chem. 276, 34695–34701 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Duda, D. M., Walden, H., Sfondouris, J. & Schulman, B. A. Structural analysis of Escherichia coli ThiF. J. Mol. Biol. 349, 774–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, C., Begley, T. P. & Ealick, S. E. Structure of the Escherichia coli ThiS–ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. Biochemistry 45, 11–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Sloper-Mould, K. E., Jemc, J. C., Pickart, C. M. & Hicke, L. Distinct functional surface regions on ubiquitin. J. Biol. Chem. 276, 30483–30489 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Roush, R. F., Nolan, E. M., Lohr, F. & Walsh, C. T. Maturation of an Escherichia coli ribosomal peptide antibiotic by ATP-consuming N–P bond formation in microcin C7. J. Am. Chem. Soc. 130, 3603–3609 (2008).

    Article  CAS  Google Scholar 

  • Pearce, M. J., Mintseris, J., Ferreyra, J., Gygi, S. P. & Darwin, K. H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322, 1104–1107 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath, J. P., Jentsch, S. & Varshavsky, A. UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J. 10, 227–236 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handley, P. M., Mueckler, M., Siegel, N. R., Ciechanover, A. & Schwartz, A. L. Molecular cloning, sequence, and tissue distribution of the human ubiquitin-activating enzyme E1. Proc. Natl Acad. Sci. USA 88, 258–262 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield, P. M., Callis, J. & Vierstra, R. D. Cloning of ubiquitin activating enzyme from wheat and expression of a functional protein in Escherichia coli. J. Biol. Chem. 265, 15813–15817 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Liakopoulos, D., Doenges, G., Matuschewski, K. & Jentsch, S. A novel protein modification pathway related to the ubiquitin system. EMBO J. 17, 2208–2214 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, L. & Yeh, E. T. Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J. Biol. Chem. 274, 12036–12042 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Desterro, J. M., Rodriguez, M. S., Kemp, G. D. & Hay, R. T. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 274, 10618–10624 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Gong, L., Li, B., Millas, S. & Yeh, E. T. Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett. 448, 185–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Johnson, E. S., Schwienhorst, I., Dohmen, R. J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, W. & Krug, R. M. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 20, 362–371 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa, K., Mizushima, N., Noda, T. & Ohsumi, Y. A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J. Biol. Chem. 275, 7462–7465 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Komatsu, M. et al. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 23, 1977–1986 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, J., Li, X., Gygi, S. P. & Harper, J. W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447, 1135–1138 (2007). Together with references 45 and 46, this paper identifies UBA6 as a second activating enzyme for ubiquitin, and identifies USE1 as a specific E2 conjugating enzyme for UBA6.

    Article  CAS  PubMed  Google Scholar 

  • Pelzer, C. et al. UBE1L2, a novel E1 enzyme specific for ubiquitin. J. Biol. Chem. 282, 23010–23014 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Chiu, Y. H., Sun, Q. & Chen, Z. J. E1-L2 activates both ubiquitin and FAT10. Mol. Cell 27, 1014–1023 (2007). Identifies UBA6 as a candidate E1 for FAT10.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Huang, D. T., Walden, H., Duda, D. & Schulman, B. A. Ubiquitin-like protein activation. Oncogene 23, 1958–1971 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Walden, H., Podgorski, M. S. & Schulman, B. A. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature 422, 330–334 (2003). Describes the first crystal structure of the canonical E1 protein complex responsible for activating NEDD8, and defines the domain structure of canonical E1s.

    Article  CAS  PubMed  Google Scholar 

  • Lois, L. M. & Lima, C. D. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24, 439–451 (2005). Describes the first structure of the heterodimeric SUMO activating enzyme bound to SUMO.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, I. & Schindelin, H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134, 268–278 (2008). Describes the first structure of an activating enzyme for ubiquitin in complex with ubiquitin.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu, M. et al. The C-terminal region of an Apg7p/Cvt2p is required for homodimerization and is essential for its E1 activity and E1–E2 complex formation. J. Biol. Chem. 276, 9846–9854 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Tanida, I., Tanida-Miyake, E., Ueno, T. & Kominami, E. The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J. Biol. Chem. 276, 1701–1706 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Schmitz, J. et al. The sulfurtransferase activity of Uba4 presents a link between ubiquitin-like protein conjugation and activation of sulfur carrier proteins. Biochemistry 47, 6479–6489 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Haas, A. L. & Rose, I. A. The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. J. Biol. Chem. 257, 10329–10337 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Haas, A. L., Warms, J. V., Hershko, A. & Rose, I. A. Ubiquitin-activating enzyme. Mechanism and role in protein–ubiquitin conjugation. J. Biol. Chem. 257, 2543–2548 (1982). Demonstrates that UBA1 becomes doubly loaded with ubiquitin, with one molecule in a thioester with the catalytic Cys of UBA1 and the second ubiquitin as an adenylate.

    Article  CAS  PubMed  Google Scholar 

  • Haas, A. L., Warms, J. V. & Rose, I. A. Ubiquitin adenylate: structure and role in ubiquitin activation. Biochemistry 22, 4388–4394 (1983).

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover, A., Heller, H., Katz-Etzion, R. & Hershko, A. Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. Proc. Natl Acad. Sci. USA 78, 761–765 (1981). Suggests a two step mechanism for ubiquitin activation, the first involving adenylation and the second involving thioester formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciechanover, A., Elias, S., Heller, H. & Hershko, A. “Covalent affinity” purification of ubiquitin-activating enzyme. J. Biol. Chem. 257, 2537–2542 (1982). Describes the purification of E1 ubiquitin activating enzyme, UBA1, which used the thioester as a tool for recovery of active enzyme. The ability to purify active UBA1 revolutionized the field.

    Article  CAS  PubMed  Google Scholar 

  • Pickart, C. M. & Rose, I. A. Functional heterogeneity of ubiquitin carrier proteins. J. Biol. Chem. 260, 1573–1581 (1985). Demonstrated the existence of a family of E2 conjugating enzymes that are charged by UBA1, foreshadowing the discovery that distinct E2s are involved in distinct biological pathways.

    Article  CAS  PubMed  Google Scholar 

  • Haas, A. L. & Bright, P. M. The resolution and characterization of putative ubiquitin carrier protein isozymes from rabbit reticulocytes. J. Biol. Chem. 263, 13258–13267 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Haas, A. L., Bright, P. M. & Jackson, V. E. Functional diversity among putative E2 isozymes in the mechanism of ubiquitin–histone ligation. J. Biol. Chem. 263, 13268–13275 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Pickart, C. M., Kasperek, E. M., Beal, R. & Kim, A. Substrate properties of site-specific mutant ubiquitin protein (G76A) reveal unexpected mechanistic features of ubiquitin-activating enzyme (E1). J. Biol. Chem. 269, 7115–7123 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Tokgoz, Z., Bohnsack, R. N. & Haas, A. L. Pleiotropic effects of ATP..Mg2+ binding in the catalytic cycle of ubiquitin-activating enzyme. J. Biol. Chem. 281, 14729–14737 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Bohnsack, R. N. & Haas, A. L. Conservation in the mechanism of Nedd8 activation by the human AppBp1–Uba3 heterodimer. J. Biol. Chem. 278, 26823–26830 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Walden, H. et al. The structure of the APPBP1–UBA3–NEDD8–ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell 12, 1427–1437 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Huang, D. T. et al. Basis for a ubiquitin-like protein thioester switch toggling E1–E2 affinity. Nature 445, 394–398 (2007). Reports the first structure of a doubly loaded canonical E1 enzyme, and defines a thioester switch responsible for promoting transfer of the ubiquitin like protein NEDD8 to its E2, UBC12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, C. et al. The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-α/β-induced ubiquitin-like protein. Proc. Natl Acad. Sci. USA 101, 7578–7582 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, D. T. et al. A unique E1–E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nature Struct. Mol. Biol. 11, 927–935 (2004).

    Article  CAS  Google Scholar 

  • Huang, D. T. et al. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Mol. Cell 17, 341–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Souphron, J. et al. Structural dissection of a gating mechanism preventing misactivation of ubiquitin by NEDD8's E1. Biochemistry 47, 8961–8969 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, K. D. et al. A specific inhibitor of the ubiquitin activating enzyme: synthesis and characterization of adenosyl-phospho-ubiquitinol, a nonhydrolyzable ubiquitin adenylate analogue. Biochemistry 29, 7373–7380 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Madden, M. M. et al. Substrate properties of ubiquitin carboxyl-terminally derived peptide probes for protein ubiquitination. Biochemistry 47, 3636–3644 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Szczepanowski, R. H., Filipek, R. & Bochtler, M. Crystal structure of a fragment of mouse ubiquitin-activating enzyme. J. Biol. Chem. 280, 22006–22011 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, M. L. & Vierstra, R. D. Cloning of a 16-kDa ubiquitin carrier protein from wheat and Arabidopsis thaliana. Identification of functional domains by in vitro mutagenesis. J. Biol. Chem. 266, 23878–23885 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Bencsath, K. P., Podgorski, M. S., Pagala, V. R., Slaughter, C. A. & Schulman, B. A. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem. 277, 47938–47945 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Durfee, L. A., Kelley, M. L. & Huibregtse, J. M. The basis for selective E1–E2 interactions in the ISG15 conjugation system. J. Biol. Chem. 283, 23895–23902 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, T. V. et al. The E1 ubiquitin-activating enzyme Uba1 in Drosophila controls apoptosis autonomously and tissue growth non-autonomously. Development 135, 43–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Eletr, Z. M., Huang, D. T., Duda, D. M., Schulman, B. A. & Kuhlman, B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nature Struct. Mol. Biol. 12, 933–934 (2005).

    Article  CAS  Google Scholar 

  • Reverter, D. & Lima, C. D. Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex. Nature 435, 687–692 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabut, G. & Peter, M. Function and regulation of protein neddylation. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 9, 969–976 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatham, M. H. et al. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. Biochemistry 42, 9959–9969 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Whitby, F. G., Xia, G., Pickart, C. M. & Hill, C. P. Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes. J. Biol. Chem. 273, 34983–34991 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Wang, J. et al. The intrinsic affinity between E2 and the Cys domain of E1 in ubiquitin-like modifications. Mol. Cell 27, 228–237 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haas, A. L. Structural insights into early events in the conjugation of ubiquitin and ubiquitin-like proteins. Mol. Cell 27, 174–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Huang, D. T., Zhuang, M., Ayrault, O. & Schulman, B. A. Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2. Nature Struct. Mol. Biol. 15, 280–287 (2008).

    Article  CAS  Google Scholar 

  • Finley, D., Ciechanover, A. & Varshavsky, A. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37, 43–55 (1984). Identifies UBA1 as the protein mutated in the ts85 cell line and demonstrates that UBA1 is responsible for the vast majority of ubiquitin conjugation in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover, A., Finley, D. & Varshavsky, A. Mammalian cell cycle mutant defective in intracellular protein degradation and ubiquitin–protein conjugation. Prog. Clin. Biol. Res. 180, 17–31 (1985).

    CAS  PubMed  Google Scholar 

  • Schlabach, M. R. et al. Cancer proliferation gene discovery through functional genomics. Science 319, 620–624 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strous, G. J., van Kerkhof, P., Govers, R., Ciechanover, A. & Schwartz, A. L. The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation of the growth hormone receptor. EMBO J. 15, 3806–3812 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocca, A., Lamaze, C., Subtil, A. & Dautry-Varsat, A. Involvement of the ubiquitin/proteasome system in sorting of the interleukin 2 receptor β chain to late endocytic compartments. Mol. Biol. Cell 12, 1293–1301 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson, R. & Hochstrasser, M. A viable ubiquitin-activating enzyme mutant for evaluating ubiquitin system function in Saccharomyces cerevisiae. FEBS Lett. 477, 193–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ghaboosi, N. & Deshaies, R. J. A conditional yeast E1 mutant blocks the ubiquitin–proteasome pathway and reveals a role for ubiquitin conjugates in targeting Rad23 to the proteasome. Mol. Biol. Cell 18, 1953–1963 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni, M. & Smith, H. E. E1 ubiquitin-activating enzyme UBA-1 plays multiple roles throughout C. elegans development. PLoS Genet. 4, e1000131 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfleger, C. M., Harvey, K. F., Yan, H. & Hariharan, I. K. Mutation of the gene encoding the ubiquitin activating enzyme Uba1 causes tissue overgrowth in Drosophila. Fly (Austin) 1, 95–105 (2007).

    Article  Google Scholar 

  • Nollen, E. A. et al. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc. Natl Acad. Sci. USA 101, 6403–6408 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramser, J. et al. Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am. J. Hum. Genet. 82, 188–193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephen, A. G., Trausch-Azar, J. S., Ciechanover, A. & Schwartz, A. L. The ubiquitin-activating enzyme E1 is phosphorylated and localized to the nucleus in a cell cycle-dependent manner. J. Biol. Chem. 271, 15608–15614 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Nouspikel, T. & Hanawalt, P. C. Impaired nucleotide excision repair upon macrophage differentiation is corrected by E1 ubiquitin-activating enzyme. Proc. Natl Acad. Sci. USA 103, 16188–16193 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grenfell, S. J., Trausch-Azar, J. S., Handley-Gearhart, P. M., Ciechanover, A. & Schwartz, A. L. Nuclear localization of the ubiquitin-activating enzyme, E1, is cell-cycle-dependent. Biochem. J. 300, 701–708 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohmen, R. J. et al. An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J. Biol. Chem. 270, 18099–18109 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Bossis, G. & Melchior, F. Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Boggio, R., Colombo, R., Hay, R. T., Draetta, G. F. & Chiocca, S. A mechanism for inhibiting the SUMO pathway. Mol. Cell 16, 549–561 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Boggio, R., Passafaro, A. & Chiocca, S. Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation. J. Biol. Chem. 282, 15376–15382 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Handeli, S. & Weintraub, H. The ts41 mutation in Chinese hamster cells leads to successive S phases in the absence of intervening G2, M, and G1. Cell 71, 599–611 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., McPhie, D. L., Hirschberg, J. & Neve, R. L. The amyloid precursor protein-binding protein APP-BP1 drives the cell cycle through the S–M checkpoint and causes apoptosis in neurons. J. Biol. Chem. 275, 8929–8935 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A. et al. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J. 26, 4457–4466 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goehring, A. S., Rivers, D. M. & Sprague, G. F. Jr. Attachment of the ubiquitin-related protein Urm1p to the antioxidant protein Ahp1p. Eukaryot. Cell 2, 930–936 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlieker, C., Van der Veen, A. G., Damon, J. R., Spooner, E. & Ploegh, H. L. A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proc. Natl Acad. Sci. USA 105, 18255–18260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leidel, S. et al. Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458, 228–232 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Nakai, Y., Nakai, M. & Hayashi, H. Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. J. Biol. Chem. 283, 27469–27476 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Huang, B., Lu, J. & Bystrom, A. S. A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 14, 2183–2194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanida, I. et al. Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol. Biol. Cell 10, 1367–1379 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, Y. et al. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J. Biol. Chem. 282, 8036–8043 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Mizushima, T. et al. Crystal structure of Ufc1, the Ufm1-conjugating enzyme. Biochem. Biophys. Res. Commun. 362, 1079–1084 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sekizawa, R. et al. Panepophenanthrin, from a mushroom strain, a novel inhibitor of the ubiquitin-activating enzyme. J. Nat. Prod. 65, 1491–1493 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. et al. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 67, 9472–9481 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Tong, H., Hateboer, G., Perrakis, A., Bernards, R. & Sixma, T. K. Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J. Biol. Chem. 272, 21381–21387 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Worthylake, D. K., Prakash, S., Prakash, L. & Hill, C. P. Crystal structure of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme Rad6 at 2.6 Å resolution. J. Biol. Chem. 273, 6271–6276 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature (in the press).

  • Huang, D.T. et al. E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol. Cell. 33, 483–495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar